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Abstract

Background: Alcohol consumption is an established risk factor for breast cancer and the association generally
appears stronger among estrogen receptor (ER)-positive tumors. However, the biological mechanisms underlying
this association are not completely understood.

Methods: We analyzed messenger RNA (mRNA) microarray data from both invasive breast tumors (N = 602) and
tumor-adjacent normal tissues (N = 508) from participants diagnosed with breast cancer in the Nurses’ Health Study
(NHS) and NHSII. Multivariable linear regression, controlling for other known breast cancer risk factors, was used to
identify differentially expressed genes by pre-diagnostic alcohol intake. For pathway analysis, we performed gene
set enrichment analysis (GSEA). Differentially expressed genes or enriched pathway-defined gene sets with false
discovery rate (FDR) <0.1 identified in tumors were validated in RNA sequencing data of invasive breast tumors
(N = 166) from The Cancer Genome Atlas.

Results: No individual genes were significantly differentially expressed by alcohol consumption in the NHS/NHSII.
However, GSEA identified 33 and 68 pathway-defined gene sets at FDR <0.1 among 471 ER+ and 127 ER- tumors,
respectively, all of which were validated. Among ER+ tumors, consuming 10+ grams of alcohol per day (vs. 0) was
associated with upregulation in RNA metabolism and transport, cell cycle regulation, and DNA repair, and downregulation
in lipid metabolism. Among ER- tumors, in addition to upregulation in RNA processing and cell cycle, alcohol intake was
linked to overexpression of genes involved in cytokine signaling, including interferon and transforming growth factor
(TGF)-β signaling pathways, and translation and post-translational modifications. Lower lipid metabolism was observed in
both ER+ tumors and ER+ tumor-adjacent normal samples. Most of the significantly enriched gene sets identified in
ER- tumors showed a similar enrichment pattern among ER- tumor-adjacent normal tissues.

Conclusions: Our data suggest that moderate alcohol consumption (i.e. 10+ grams/day, equivalent to one or more
drinks/day) is associated with several specific and reproducible biological processes and pathways, which adds potential
new insight into alcohol-related breast carcinogenesis.
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Background
Alcohol consumption is an established breast cancer risk
factor [1]. Large prospective cohort studies have re-
ported a modest but significant increase in risk (8–9%)
per 10 g of alcohol consumed per day [1, 2]. Specifically,
in the Nurses’ Health Study (NHS) with long-term aver-
age alcohol consumption, the risk increased by 15%
(95% confidence interval (CI) 1.06–1.24) for 5.0–9.9 g/
day of alcohol and by 51% (95% CI 1.35–1.70) for at
least 30 g/day of alcohol, compared to women who did
not drink [3]. The positive association was observed in
both estrogen receptor (ER)-positive (ER+) and ER-
negative (ER-) tumors but appeared stronger with ER+
than with ER- tumors [3, 4].
The mechanism underlying the alcohol and breast

cancer association is not completely understood. One
major hypothesis is that this association is mediated, at
least in part, through estrogen metabolism [5, 6]. Other
hypothesized mechanisms include the generation of
acetaldehyde and reactive oxygen species (ROS) during
alcohol metabolism [7]. Acetaldehyde has been classified
as a carcinogen by the International Agency for Research
on Cancer (IARC) [8] and, after alcohol administration,
accumulation of acetaldehyde was observed in rat mam-
mary tissue in experimental studies [9, 10]. Ethanol oxi-
dation can lead to generation of ROS in rat mammary
tissue [9, 10] and ROS promotes many aspects of tumor
development and progression [11]. In addition, disrup-
tion of folate metabolism and DNA and/or histone hy-
pomethylation have been hypothesized to be involved in
alcohol-mediated carcinogenesis [8]. However, despite
these hypotheses, no definitive mechanisms have yet
been identified.
Assessment of molecular and/or genetic markers in

breast tumor tissues may provide insights into the
underlying mechanism(s) for established breast cancer
risk factors. Recent studies evaluating breast tumor
genome-wide gene expression profiling have identified
molecular signatures associated with several estab-
lished risk factors, such as body mass index (BMI)
[12] and parity [13]. However, to date, no studies
have assessed alcohol-related molecular signatures in
breast tumors. To help unravel the underlying mecha-
nisms of alcohol consumption and breast cancer risk,
we evaluated the association between pre-diagnostic
alcohol consumption and genome-wide gene expres-
sion in breast tumor and tumor-adjacent normal tis-
sue in the prospective NHS and NHSII, and further
validated our results in an independent validation
dataset obtained from The Cancer Genome Atlas
(TCGA) [14]. We hypothesized that the biological
pathways underlying the association between alcohol
and breast cancer could vary by tumor ER status and
thus conducted the analysis by tumor ER expression.

Methods
Study population
The NHS was established in 1976 when 121,700 US fe-
male registered nurses, aged 30–55 years, completed an
initial mailed questionnaire, and the NHSII was estab-
lished in 1989, when 116,429 US female registered
nurses, aged 25–42 years, completed and returned an
initial questionnaire. Both cohorts have been followed
biennially by mailed questionnaire to update information
on exposure status and ascertain newly diagnosed dis-
eases, including cancers. All women reporting incident
diagnoses of breast cancer were asked for permission to
review their medical records; cases for which pathology
reports were obtained were confirmed by medical record
review (>99%).
For this analysis, we included invasive breast cancer

cases with both sufficient RNA from formalin-fixed
paraffin-embedded (FFPE) tumor blocks for expression
profiling and with available blood samples (the latter cri-
terion to maximize the utility of the subset of cases that
could be arrayed). Upon meeting the two criteria, in the
NHS, we identified 532 invasive postmenopausal cases
diagnosed in 1990–2004 which were a subset of the
Cancer Genetic Markers of Susceptibility (CGEMS) ini-
tiative [15]; in the NHSII, invasive cases, regardless of
menopausal status, diagnosed in 1995–2009 in the
NHSII (N = 280) were included. Archived FFPE breast
tumor blocks were obtained from the cohort tumor tis-
sue repository; details of breast tumor tissue block col-
lection have been described previously [16, 17].
Although only a subset of all the eligible cases were in-
cluded in the TMA (primarily because either the tumor
blocks had been destroyed by the hospital or there was
insufficient tumor in the block), in each cohort, the
characteristics of participants included in the TMA were
very similar to those of all the eligible cases, including
alcohol consumption and other breast cancer risk factors
(e.g. first-degree family history, BMI and parity). The
study was approved by the Committee on the Use of
Human Subjects in Research at the Brigham and
Women’s Hospital.

Assessment of alcohol exposure and other covariates
The assessment of alcohol consumption has been re-
ported in detail elsewhere [3]. Briefly, information was
first collected in 1980 in the NHS and in 1991 in the
NHSII when participants reported their average fre-
quency of intake for each alcoholic beverage (i.e. beer,
wine, and liquor) during the previous 12 months
through a semi-quantitative food frequency question-
naire, which was updated every 2–4 years thereafter in
each cohort. Alcohol intake (grams per day) was calcu-
lated as the sum of the daily number of drinks multi-
plied by the average alcohol content of each beverage
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type (12.8 g per beer, 11.0 g per glass of wine, and 14.0 g
per serving of liquor). We then calculated cumulative
average intake by averaging alcohol consumption over
time using all available information beginning in 1980
(NHS) or 1991 (NHSII). We also evaluated recent alco-
hol intake using information from the questionnaire
cycle before diagnosis (i.e. 2–4 years before diagnosis).
Cumulative average and recent alcohol consumption
were highly correlated (Spearman r = 0.87) and results
were very similar when using either cumulative average
or recent alcohol; thus we presented results from recent
alcohol intake. Covariate data, including parity, family
history of breast cancer, BMI (weight(kg)/height(m)2),
menopausal status and menopausal hormone therapy
(MHT) use were obtained from the NHS or NHSII
questionnaire at baseline and subsequent biennial ques-
tionnaires; for BMI, menopausal status and MHT use,
the information taken from the most recent question-
naire was used.

Gene expression microarray and quality control analysis
RNA was extracted from multiple cores of 1 or 1.5 mm
taken from tumor (N = 3 cores) or adjacent normal (N =
5 cores) tissues from FFPE blocks using the Qiagen All-
Prep RNA isolation kit. Tumor-adjacent normal tissue
was generally > 1 cm from the tumor edge. Since FFPE
samples are known to have variable yields, tissues from
all the cores from the same patient were placed into one
microtube to maximize RNA yield. Total RNA was used
to synthesize double-stranded complementary DNA
which was then fragmented and hybridized to Affyme-
trix Glue Grant Human Transcriptome Array [18] (HTA
3.0v1 pre-release version from Affymetrix, Santa Clara,
CA, USA). We included four independent breast tumor
samples as technical replicates (identified from Beth
Israel Deaconess Medical Center, Boston, MA, USA) in
each assay plate; the correlation of these replicates
across all arrays was ≥ 0.93.
Gene expression data were normalized and summarized

using robust multiarray average (RMA; Affymetrix Power
Tools (APT) v1.18.0). Out of the total 1324 tumor and
tumor-adjacent normal specimens (934 and 390 in the
NHS and NHSII, respectively), we excluded 131 (14%)
and 43 (11%) from the NHS and NHSII, respectively, with
an area under the curve (AUC) < 0.55 (evaluated using
APT probeset summarization-based metrics) and further
excluded 40 that failed the non-outlier analysis by array-
QualityMetrics v3.24.0 [19], leaving 1110 samples (602 tu-
mors and 508 tumor-adjacent normal samples) for
analysis. Although tumor specimens from the NHS were
generally older than those from the NHSII, the propor-
tions filtered out according to RNA quality (i.e. 14% vs.
11%) were similar in the two cohorts. Non-specific filter-
ing by median expression levels was used to remove the

bottom 25% of expressed probes, leaving 25,979 gene-
level annotated transcript clusters included in the analysis.
Gene expression data were deposited into the Gene Ex-
pression Omnibus [GEO: GSE93601].
We also assessed biological concordance (i.e. probe ex-

pression concordance with protein markers measured by
immunohistochemical (IHC) staining) for select probes.
We confirmed the correlation between probes for ESR1,
PGR, and ERBB2 with IHC markers, ER, progesterone
receptor (PR), and human epidermal growth factor re-
ceptor 2 (HER2), in tumors to confirm biological repro-
ducibility of the data (Additional file 1: Figure S1).

Statistical analysis
We performed analyses at the level of both probes and
pathway-defined gene sets (Fig. 1). All analyses were
conducted separately in ER+ tumors, ER+ tumor-
adjacent normal tissues, and ER- tumors and ER-
tumor-adjacent normal tissues. We conducted multivari-
able linear regression using the R Bioconductor package
linear models for microarray data (LIMMA) [20] for
25,979 probes. To maximize power, samples from the
NHS and NHSII were pooled in all analyses (although
NHS and NHSII samples were run on different plates,
all samples were normalized together) and we adjusted
for microarray plate, thus controlling for both cohort
and plate, in the regression models. Alcohol consump-
tion was defined as a three-category variable: 0, > 0 to <
10 and 10+ g/day. Factors correlated with alcohol con-
sumption and/or those known to affect tumor gene ex-
pression were evaluated as potential covariates in the
regression models. Age at diagnosis, year of diagnosis,
microarray plate, first-degree family history of breast
cancer and recent BMI were included in the final models
presented here. Although smoking status is often corre-
lated with alcohol intake, smoking was not adjusted for
in the analysis because so few women (~8%) were
current smokers 2–4 years before diagnosis. In the
single-probe analysis (N = 25,979 probes), individual
probes were considered significantly differentially
expressed by alcohol intake using a false discovery rate
(FDR) threshold: FDR <0.1 for tumors and FDR <0.05
for tumor-adjacent normal tissues (due to the lack of a
validation dataset of tumor-adjacent normal samples, a
more stringent FDR threshold was applied).
To incorporate biological knowledge into the analysis, we

further performed gene set enrichment analysis (GSEA)
[21] to identify pathway-defined gene sets that varied by al-
cohol intake. Gene sets were collected from the Molecular
Signatures Database (MSigDB) (http://www.broadinstitu-
te.org/gsea/msigdb/), including 217 from BioCarta, 186
from Kyoto Encyclopedia of Genes and Genomes (KEGG),
674 from Reactome, and 825 from Gene Ontology (GO)
biological process; those with < 15 genes or > 500 genes
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were filtered out, leaving 1293 pathway-defined gene sets in
the analysis. The four pathway databases were included be-
cause each has a distinct but also complementary approach
to capture known biological pathways [22]. We used the
GSEA “Pre-ranked” function and imported ranked gene lists
according to the alcohol-associated t statistic from the re-
gression models. In the pathway analysis, only probes that
are annotated as a gene (N = 15,407 probes) were included
in the GSEA. Briefly, all the genes were first ranked accord-
ing to the alcohol-associated t statistic; an enrichment score
was then calculated for each gene set. The enrichment score
corresponds to a weighted Kolmogorov-Smirnov-like statis-
tic and reflects the extent to which the gene set is overrep-
resented at the extreme (i.e. top or bottom) of the entire
ranked list [21]. If the enrichment score is positive (e.g. the
gene set is overrepresented by top ranked genes), then the
gene set is considered upregulated while it is considered
downregulated if the score is negative. In the discovery
stage, among tumors, gene sets at FDR <0.25 were consid-
ered significantly enriched. Again, a more stringent FDR
threshold (i.e. FDR <0.05) was applied to tumor-adjacent
normal samples. We further performed leading-edge subset
analysis to identify the core set (i.e. key genes) of the gene
set that accounted for the enrichment signal [21].

Validation analysis
The validation dataset consisted of RNA sequencing
(RNA-Seq) data from 166 invasive breast tumors, a sub-
set of breast tumor samples from TCGA that had pre-
diagnostic alcohol consumption (generally defined as re-
cent intake) and comparable covariate data. For the val-
idation dataset, we originally contacted six TCGA sites

with the largest number of potential cases and four of
them agreed to collect or provide already available breast
cancer risk factor data, including the University of Pitts-
burgh, Roswell Park Cancer Institute, the Mayo Clinic
and Memorial Sloan Kettering Cancer Center. A total of
220 invasive cases had RNA-Seq data and at least some
of the key covariates (e.g. BMI or alcohol or parity), of
which 166 had complete information on alcohol con-
sumption and covariates that were required for adjust-
ment in the regression models. TCGA RNA-Seq data
were previously processed using the MapSplice algo-
rithm [23] to perform the alignment and RNA-Seq by
expectation maximization (RSEM) [24] to estimate gene
abundance. The expression dataset included 20,531
genes; in the differential expression analysis, genes with
low expression (i.e. < 25th percentile) according to me-
dian counts per million were removed, leaving 15,398
unique genes. The common genes in the NHS/NHSII
and the TCGA dataset accounted for approximately 84%
of all the genes in each dataset. The RNA-Seq data were
normalized using the trimmed mean of M-values [25]
and log-transformed with associated precision weights
using Voom. Multivariable linear regression imple-
mented through R/Bioconductor LIMMA was then used
to identify genes that were differentially expressed by re-
cent alcohol intake and we further performed GSEA
using similar methods as in the NHS/NHSII.
To validate the significantly enriched pathway-defined

gene sets identified in the NHS/NHSII, we required that
these gene sets showed a consistent direction (i.e. same
upregulation or downregulation) of enrichment and an
FDR <0.25 in the TCGA dataset (Fig. 1). Among those

Fig. 1 Analysis strategy for identifying differentially expressed probes or enriched pathway-defined gene sets in the Nurses’ Health Study (NHS)
and the NHSII. FDR false discovery rate, LIMMA linear models for microarray data

Wang et al. Breast Cancer Research  (2017) 19:108 Page 4 of 15



replicated gene sets, we only reported gene sets at FDR
<0.1 in the NHS/NHSII. No validation dataset of breast
normal or tumor-adjacent normal samples with alcohol
consumption information was available and thus it was
not feasible for us to replicate our results in further
datasets.

Results
In the NHS and NHSII, the average alcohol intake was
relatively low (mean 6.4 g/day, SD 11.4). Approximately
34% of the women had no recent alcohol consumption
and 45% women consumed < 10 g of alcohol per day
and only 21% women consumed 10+ g/day of alcohol.
Age at diagnosis and parity were roughly evenly distrib-
uted across categories of recent alcohol intake. Women
with higher alcohol intake were less likely to have a
first-degree family history of breast cancer, had lower
BMI and were diagnosed in more recent years (Table 1).
Among women with natural menopause or bilateral oo-
phorectomy, those with alcohol intake at least 10 g/day
were less likely to use MHT compared to women with
no or lower alcohol intake. Out of the 602 tumor speci-
mens, 445 (74%) had matched adjacent normal tissues.
The characteristics of women with tumor-adjacent
normal samples were similar to those with only tumor
specimens available (data not shown). Alcohol

consumption and other risk factors such as age at diag-
nosis and BMI were similar between women diagnosed
with ER+ tumors and those with ER- tumors (Table 2).
Compared to ER+ tumors, ER- tumors tended to be lar-
ger, moderately or poorly differentiated, and diagnosed
at a later stage.
Patients with invasive breast cancer in the valid-

ation dataset (i.e. TCGA) were younger at diagnosis,
had a higher BMI, were less likely to drink alcohol
and were diagnosed more recently (i.e. 2005–2009),
compared to those in the NHS/NHSII (Additional
file 2: Table S1). In addition, the TCGA dataset in-
cluded a greater percentage of premenopausal
women than the NHS/NHSII dataset (38% vs. 17%);
among postmenopausal women, those in the TCGA
dataset were less likely to use MHT than women in
the NHS/NHSII dataset. While the majority of the
TCGA tumors were stage II or III, about 60% of the
tumors in the NHS/NHSII were stage I. Similar to
the NHS/NHSII, in TCGA, women with higher alco-
hol intake (i.e. 1+ drink per day) had a lower BMI,
were less likely to have a first-degree family history
of breast cancer, and tended to be premenopausal/
perimenopausal and were diagnosed in more recent
years (i.e. 2008–2011), compared to women with
lower alcohol intake (Additional file 2: Table S2).

Table 1 Characteristics of patients with invasive breast cancer according to recent alcohol consumption in the NHS and the NHSII

Recent alcohol consumption, g/day

0 > 0 to < 10 10+

N = 206 N = 267 N = 126

Mean SD Mean SD Mean SD

Age at diagnosis, years 61.6 9.6 59.9 9.0 62.3 9.8

BMI at diagnosis, kg/m2 27.3 5.7 25.7 4.6 24.5 4.3

Parity 2.6 1.7 2.7 1.7 2.5 1.9

Cumulative average alcohola, g/day 0.8 2.1 4.2 4.0 19.4 12.0

Recent alcohol, g/day 0 0 3.7 2.6 22.9 16.0

N % N % N %

First-degree family history 38 18.4 45 16.9 13 10.3

Menopausal at diagnosis

Premenopausal 32 15.5 56 21.0 15 11.9

Postmenopausal 169 82.0 203 76.0 108 85.7

Unknown 5 2.4 8 3.0 3 2.4

Current MHT useb 86 52.4 117 60.0 46 43.8

Year of diagnosis

1990‒1999 122 59.2 157 58.8 66 52.4

2000‒2004 66 32.0 90 33.7 52 41.3

2005‒2009 18 8.7 20 7.5 8 6.3

NHS Nurses’ Health Study, BMI body mass index, MHT menopausal hormone therapy
aCalculated as average alcohol consumption over time prior to breast cancer diagnosis using all available exposure information
bCurrent MHT use among postmenopausal women only
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In the single-probe analysis, after adjusting for multiple
comparisons, no probes were significantly differentially
expressed by recent alcohol consumption (i.e. 10+ vs. 0 g/
day) in tumor or tumor-adjacent normal samples (Add-
itional file 2: Table S3 and Additional file 3: Figure S2).
When comparing alcohol intake < 10 vs. 0 g/day, two
probes showed significantly decreased expression in ER- tu-
mors only (FDR = 0.05, Additional file 2: Table S3); however,

no such significantly decreased expression was observed
when comparing alcohol intake of 10+ vs. 0 g/day.
In contrast to the single-probe analysis, we observed sig-

nificant enrichment for 239 pathway-defined gene sets
(FDR <0.25) among ER+ tumors when comparing recent al-
cohol intake of 10+ g/day with 0 g/day, including 220 up-
regulated and 19 downregulated gene sets (Fig. 2). Out of
the 220 upregulated gene sets, 63 (28.6%) were replicated in
TCGA, of which 28 were at FDR <0.1 (Table 3 and Add-
itional file 2: Table S4); out of the 19 downregulated gene
sets, 11(57.9%) were replicated, of which 5 were at FDR
<0.1 (Table 3). Among the replicated and significantly
enriched (FDR <0.1) gene sets in ER+ tumors, alcohol
intake (i.e. 10+ vs. 0 g/day) was associated with
overexpression of genes involved in RNA metabolism and
transport (e.g. REACTOME_METABOLISM_OF_RNA),
cell cycle (e.g. GO_MEIOTIC_CELL_CYCLE), DNA repair
(e.g. REACTOME_DOUBLE_STRAND_BREAK_REPAIR),
downregulation of lipid metabolism (i.e. REACTOME_LI-
PID_DIGESTION_MOBILIZATION_AND_TRANSPORT)
and PPAR signaling pathway (i.e. KEGG_PPAR_SIGNA-
LING_PATHWAY). As there were multiple pathway-
defined gene sets linking to similar biological processes, we
noted that these gene sets contained both common and dis-
tinct genes. For instance, the leading-edge subset analysis
revealed that among the three DNA repair related gene sets,
there were six common genes (i.e. ATM, LIG1, NBN,
RAD50, RAD52 and RPA1) which accounted for 12%, 43%
and 10% of the key genes (i.e. leading-edge subsets) in the
gene set GO_DNA_REPAIR, REACTOME_DOUBLE_-
STRAND_BREAK_REPAIR and GO_RESPONSE_TO_D-
NA_DAMAGE_STIMULUS, respectively. In contrast to ER
+ tumors, among ER+ tumor-adjacent normal specimens,
there was no enrichment for cell cycle related gene sets,
and several gene sets of RNA processing were significantly
enriched but downregulated (Fig. 3a). However, in both ER
+ tumors and tumor-adjacent normal, alcohol consumption
was associated with significant downregulation in lipid
metabolism and in the PPAR signaling pathway. The PPAR
signaling pathway consists of three subfamilies (i.e. alpha,
gamma and delta) and the leading-edge subset analysis
among ER+ tumors revealed that PPARG specifically was
among the core genes that accounted for the enrichment
signal.
For ER- tumors, we observed significant enrichment

for 665 pathway-defined gene sets (FDR <0.25) when
comparing recent alcohol intake of 10+ g/day with 0 g/
day, including 604 upregulated and 61 downregulated
gene sets (Fig. 2). Out of the 604 upregulated gene sets,
112 (18.5%) were replicated in TCGA, of which 68 were
at FDR <0.1 (Table 4 and Additional file 2: Table S5); out
of the 61 downregulated gene sets, 3 (4.9%) were repli-
cated but none were at FDR <0.1. The 68 reproducible
and significantly (FDR <0.1) upregulated gene sets

Table 2 Study population and tumor characteristics by ER
status in the NHS and the NHSII

ER+ tumors
N = 471

ER- tumors
N = 127

Mean SD Mean SD

Age at diagnosis, years 61.4 9.6 59.1 8.9

BMI at diagnosis, kg/m2 26.0 5.0 26.1 5.1

Parity 2.6 1.8 2.9 1.8

Recent alcohol, g/day 6.5 11.7 5.8 10.0

Cumulative average alcohol, g/day 6.4 9.5 5.5 8.2

N % N %

First-degree family history 79 16.8 16 12.6

Year of diagnosis

1990 1999 251 53.3 91 71.7

2000 − 2004 182 38.6 26 20.5

2005 2009 38 8.1 10 7.9

Tumor size

0.1 2.0 cm 365 77.5 68 53.5

2.1 4.0 cm 75 15.9 46 36.2

> 4.0 cm 23 4.9 7 5.5

Unknown 8 1.7 6 4.7

Lymph node involvement

None 349 74.1 95 74.8

1 3 positive nodes 85 18.0 22 17.3

> 3 positive nodes 33 7.0 8 6.3

Metastatic at diagnosis 4 0.8 1 0.8

Unknown 0 0 1 0.8

Grade

Well-differentiated 124 26.3 6 4.7

Moderately differentiated 243 51.6 35 27.6

Poorly differentiated 89 18.9 67 52.8

Unknown 15 3.2 19 15.0

Stagea

I 305 64.8 57 44.9

II 122 25.9 59 46.5

III 40 8.5 9 7.1

IV 4 0.8 1 0.8

Unknown 0 0 1 0.8

ER estrogen receptor, NHS Nurses’ Health Study, BMI body mass index
aStaging was based on tumor size and lymph node involvement
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Fig. 2 Number of enriched pathway-defined gene sets by alcohol (10+ vs. 0 g/day) in the Nurses’ Health Study (NHS) and the NHSII. ER estrogen
receptor, FDR false discovery rate, TGCA The Cancer Genome Atlas

Table 3 Enriched gene setsa by recent alcohol consumptionb in ER+ tumors in the NHS and the NHSII

Pathway-defined gene set Number of enriched genes NES FDR

Upregulated

REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX 106 2.56 <0.0001

REACTOME_INFLUENZA_LIFE_CYCLE 134 2.49 <0.0001

REACTOME_METABOLISM_OF_RNA 248 2.14 0.001

REACTOME_NEP_NS2_INTERACTS_WITH_THE_CELLULAR_EXPORT_MACHINERY 26 1.99 0.007

REACTOME_TRANSPORT_OF_MATURE_MRNA_DERIVED_FROM_AN_INTRONLESS_TRANSCRIPT 31 1.98 0.008

REACTOME_TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS 26 1.97 0.008

REACTOME_ANTIVIRAL_MECHANISM_BY_IFN_STIMULATED_GENES 61 1.93 0.014

POSITIVE_REGULATION_OF_TRANSCRIPTION_FROM_RNA_POLYMERASE_II_PROMOTER 61 1.93 0.015

REACTOME_INTERACTIONS_OF_VPR_WITH_HOST_CELLULAR_PROTEINS 31 1.90 0.018

MRNA_PROCESSING_GO_0006397 67 1.89 0.019

REACTOME_SYNTHESIS_OF_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI 17 1.89 0.019

MEIOTIC_CELL_CYCLE 24 1.89 0.020

REACTOME_TRANSPORT_OF_MATURE_TRANSCRIPT_TO_CYTOPLASM 51 1.86 0.025

RNA_PROCESSING 159 1.85 0.027

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 132 1.83 0.028

REACTOME_METABOLISM_OF_NON_CODING_RNA 45 1.83 0.029

REACTOME_DOUBLE_STRAND_BREAK_REPAIR 18 1.84 0.030

PROTEIN_RNA_COMPLEX_ASSEMBLY 60 1.84 0.030

REACTOME_REGULATION_OF_GLUCOKINASE_BY_GLUCOKINASE_REGULATORY_PROTEIN 26 1.78 0.048

Downregulated

REACTOME_LIPID_DIGESTION_MOBILIZATION_AND_TRANSPORT 38 −2.12 0.017

REACTOME_SMOOTH_MUSCLE_CONTRACTION 21 −2.13 0.024

REACTOME_MUSCLE_CONTRACTION 40 −2.06 0.025

KEGG_PPAR_SIGNALING_PATHWAY 58 −2.03 0.025

ER estrogen receptor, NHS Nurses’ Health Study, NES normalized enrichment score, FDR false discovery rate
aOnly gene sets replicated in The Cancer Genome Atlas (TCGA) dataset and FDR <0.05 are shown
bEnriched gene sets for comparison of recent alcohol consumption 10+ vs. 0 g/day
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identified among ER- tumors demonstrated that, in
addition to the upregulation in RNA processing and cell
cycle regulation, alcohol intake was also linked to strong
enrichment in cytokine signaling (e.g. REACTOME_IN-
TERFERON_SIGNALING and REACTOME_SIGNA-
LING_BY_TGF_BETA_RECEPTOR_COMPLEX) and
translation and post-translational modification (e.g. KEG-
G_UBIQUITIN_MEDIATED_PROTEOLYSIS). Among
the cytokine signaling pathways, four gene sets were re-
lated to TGF-β/SMAD/BMP signaling; four common
genes (i.e., SMAD4, SMURF2, UBE2D3, and UBE2D1)
were observed among the leading-edge subsets of these
four gene sets, and the overlapping genes accounted for
about 15%, 50%, 21% and 29% of the leading-edge subset
of REACTOME_SIGNALING_BY_TGF_BETA_RECEP-
TOR_COMPLEX, REACTOME_DOWNREGULATION_

OF_SMAD2_3_SMAD4_TRANSCRIPTIONAL_ACTIV-
ITY, and REACTOME_TRANSCRIPTIONAL_ACTIVI-
TY_OF_SMAD2_SMAD3_SMAD4_HETEROTRIMER,
and REACTOME_SIGNALING_BY_BMP, respectively.
Similar significant enrichment was also observed among
ER- tumor-adjacent normal tissues (Fig. 3b).
In both ER+ and ER- tumors, alcohol intake was asso-

ciated with upregulation in gene sets involved in RNA
metabolism and transport and cell cycle. For instance,
“REACTOME_METABOLISM_OF_RNA” was the top
ranked pathway under the category of RNA metabolism
and transport in both ER+ and ER- tumors (Fig. 3a and
b). However, despite some overlapping gene sets within
each category, there were some specific gene sets in ei-
ther ER+ or ER- tumors. For example, among cell cycle
related gene sets, in ER+ tumors, genes involved in the

a

b

-4   -2 0   2   4

Fig. 3 a, b Replicated enriched pathway-defined gene sets (false discovery rate (FDR) <0.1) by alcohol consumption in the Nurses’ Health Study
(NHS) and the NHSII. Replicated significantly enriched gene sets according to recent alcohol intake (i.e. 10+ vs. 0 g/day) in estrogen receptor
(ER)+ tumors and the same gene sets in tumor-adjacent normal tissues (a), and in ER- tumors and the same gene sets in tumor-adjacent normal
tissues (b), NHSI/II. The primary biological processes observed are shown: N = 19 and 38 gene sets for ER+ and ER- tumors, respectively;
-log10(FDR)*direction: red indicates upregulation and blue downregulation
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Table 4 Enriched gene setsa by recent alcohol consumptionb in ER- tumors in the NHS and the NHSII
Pathway-defined gene set Number of enriched genes NES FDR

Upregulated

REACTOME_TRANSLATION 144 2.31 0.0002

REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM 218 2.32 0.0003

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 124 2.38 0.001

REACTOME_METABOLISM_OF_MRNA 206 2.25 0.001

PROTEIN_RNA_COMPLEX_ASSEMBLY 60 2.25 0.001

REACTOME_INTERFERON_SIGNALING 129 2.21 0.001

REACTOME_METABOLISM_OF_RNA 248 2.18 0.001

REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE 108 2.17 0.001

REACTOME_INFLUENZA_LIFE_CYCLE 134 2.13 0.002

KEGG_SPLICEOSOME 122 2.10 0.002

KEGG_RIBOSOME 84 2.08 0.003

BIOCARTA_CDC42RAC_PATHWAY 15 2.08 0.003

REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION 104 2.07 0.003

REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX 106 2.05 0.003

REACTOME_PEPTIDE_CHAIN_ELONGATION 85 2.03 0.004

REACTOME_ANTIVIRAL_MECHANISM_BY_IFN_STIMULATED_GENES 61 2.01 0.005

RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS_AND_ASSEMBLY 79 1.97 0.006

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 132 1.97 0.006

REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION 101 1.94 0.008

REACTOME_MRNA_PROCESSING 151 1.92 0.009

RNA_PROCESSING 159 1.88 0.013

BIOCARTA_G1_PATHWAY 25 1.84 0.017

RNA_SPLICING 87 1.82 0.020

REACTOME_MRNA_SPLICING 104 1.80 0.023

REACTOME_CELL_CYCLE 328 1.79 0.024

REACTOME_CELL_CYCLE_CHECKPOINTS 97 1.78 0.026

CELLULAR_COMPONENT_ASSEMBLY 272 1.75 0.030

REGULATION_OF_TRANSCRIPTION_FROM_RNA_POLYMERASE_II_PROMOTER 271 1.75 0.030

MRNA_METABOLIC_PROCESS 78 1.74 0.031

REACTOME_HIV_INFECTION 183 1.74 0.031

RANSCRIPTION_FROM_RNA_POLYMERASE_II_PROMOTER 427 1.73 0.032

REACTOME_SIGNALING_BY_BMP 21 1.72 0.032

REACTOME_TRANSCRIPTIONAL_ACTIVITY_OF_SMAD2_SMAD3_SMAD4_HETEROTRIMER 33 1.72 0.033

REACTOME_ACTIVATION_OF_THE_MRNA_UPON_BINDING_OF_THE_CAP_BINDING_
COMPLEX_AND_EIFS_AND_SUBSEQUENT_BINDING_TO_43S

56 1.71 0.034

REACTOME_SIGNALING_BY_TGF_BETA_RECEPTOR_COMPLEX 56 1.70 0.037

REACTOME_CELL_CYCLE_MITOTIC 255 1.70 0.037

NUCLEAR_EXPORT 31 1.68 0.041

REACTOME_DOWNREGULATION_OF_SMAD2_3_SMAD4_TRANSCRIPTIONAL_ACTIVITY 18 1.68 0.041

POSITIVE_REGULATION_OF_NUCLEOBASENUCLEOSIDENUCLEOTIDE_AND_NUCLEIC_ACID_METABOLIC_PROCESS 143 1.68 0.042

KEGG_RNA_DEGRADATION 55 1.67 0.042

KEGG_ADHERENS_JUNCTION 70 1.67 0.043

G1_S_TRANSITION_OF_MITOTIC_CELL_CYCLE 25 1.67 0.045

REACTOME_TRANSPORT_OF_MATURE_TRANSCRIPT_TO_CYTOPLASM 51 1.66 0.045

POSITIVE_REGULATION_OF_TRANSCRIPTION 134 1.65 0.048

Downregulated

None

ER estrogen receptor, NHS Nurses’ Health Study, NES normalized enrichment score, FDR false discovery rate
aOnly gene sets replicated in The Cancer Genome Atlas (TCGA) dataset and FDR <0.05 are shown
bEnriched gene sets for comparison of recent alcohol consumption 10+ vs. 0 g/day

Wang et al. Breast Cancer Research  (2017) 19:108 Page 9 of 15



G2/M phase checkpoint were overexpressed while in
ER- tumors, genes involved in the G1 or G1/S transition
were upregulated (Fig. 3a and b). Further, as we hypoth-
esized that the biological mechanism of the alcohol and
breast cancer association may vary between ER+ and
ER- tumors, we also noted that there were several ER+
or ER- tumor-specific gene sets. Among ER+ tumors, al-
cohol intake was linked to gene sets involved in upregu-
lation of DNA repair but this not observed among ER-
tumors. In addition, genes related to lipid metabolism
were down-expressed in ER+ tumors but not in ER- tu-
mors. On the other hand, upregulation in cytokine sig-
naling was only observed among ER- tumors.
Among ER+ tumor-adjacent normal tissues, we ob-

served significant enrichment for 335 pathway-defined
gene sets (FDR <0.05), of which 1 was upregulated and
334 were downregulated by recent alcohol intake (i.e. 10
+ vs. 0 g/day); among ER- tumor-adjacent normal tis-
sues, 340 and 58 pathway-defined gene sets were signifi-
cantly (FDR <0.05) upregulated and downregulated,
respectively. Table 5 presents the top 10 ranked upregu-
lated or downregulated pathway-defined gene sets iden-
tified in the NHS/NHSII. Among ER+ tumor-adjacent
normal tissues, only one gene set (i.e. olfactory transduc-
tion) was significantly upregulated at FDR <0.05; the top
ranked downregulated gene sets included mitochondrial
respiratory electron transport and TCA cycle, WNT sig-
naling pathway, integrin pathway and focal adhesion,
and fatty acids/triacylglycerol/ketone body metabolism.
Among ER- tumor-adjacent normal tissues, the top
ranked upregulated gene sets, such as RNA metabolism
and translation, were also seen among those top ranked
in ER- tumors; the strongest enrichment for downregu-
lated gene sets included neuroactive ligand-receptor
interaction, GPCR ligand binding, and cytochrome P450
arranged by substrate type.
As several enzymes, such as alcohol dehydrogenase

(ADH) and aldehyde dehydrogenase (ALDH), are known
to play an important role in alcohol metabolism, we specif-
ically examined the expression of genes involved in alcohol
metabolism in tumors and adjacent normal tissues. Most
of these genes, including ADH1B, ALDH1A1, ADH1C and
ALDH2, were significantly down-expressed in ER+ or ER-
tumors compared to tumor-adjacent normal tissues
(Table 6), although none showed significant differential ex-
pression by alcohol intake in either tissue type. For in-
stance, among the seven alcohol metabolism genes
included in our data, ADH1B showed the most reduced
expression in ER+ or ER- tumors (fold change 0.40).
As more than half (i.e. 60%) of the tumors in the NHS/

NHSII were stage I tumors while the majority of the tu-
mors in TCGA were stage II or III, we further conducted
stratified analyses according to tumor stage in secondary
analyses. Specifically, we performed GSEA among stage

II/III ER+ tumors in the NHS/NHSII and further validated
in stage II/III ER+ tumors in TCGA; we were not able to
conduct similar analysis among stage II/III ER- tumors be-
cause of the limited case numbers in TCGA. We found
that the replicated enrichment signals in stage II/III ER+
tumors were very similar to those in all ER+ tumors in the
NHS/NHSII (Additional file 2: Table S6).

Discussion
To our knowledge, this is the first epidemiologic study
to assess the association between pre-diagnostic alcohol
consumption and breast tumor genome-wide gene ex-
pression. In the differential gene expression analysis by
recent alcohol consumption, we did not find individual
genes significantly upregulated or downregulated by al-
cohol after accounting for multiple comparisons. How-
ever, gene set analysis identified reproducible enriched
pathway-defined gene sets in breast tumors. Specifically,
recent alcohol intake of at least 10 g/day was linked to
increased proliferation and lower lipid metabolism in ER
+ tumors; among ER- tumors, in addition to an increase
in proliferation, some further signals, including upregu-
lation in cytokine signaling, such as interferon (IFN) and
TGF-β signaling pathways, were noted.
Cohort studies generally support a stronger positive

association among ER+ tumors than among ER- tumors
[26, 27]. A strong enrichment signal observed from GSEA
was increased proliferation in ER+ tumors. Several of the
significantly upregulated gene sets, including cell cycle
regulation (e.g. mitosis and G2/M checkpoint) and DNA
repair are closely related to proliferation [28]. In addition,
RNA processing (e.g. RNA splicing or transport) has been
shown to affect cell cycle and proliferation [29], although
increased RNA processing also may be a consequence of
proliferation. Our finding is consistent with experimental
studies in which ethanol promoted proliferation in ER+
breast tumor cell lines [30–32]. In ER+ tumors, we also ob-
served downregulation of lipid metabolism, including the
PPAR-gamma signaling pathway. PPAR-gamma signaling
plays an essential role in adipocyte differentiation and ex-
pression of adipocyte specific genes, and also regulates lipid
metabolism, cell proliferation and differentiation, glucose
homeostasis and inflammation [33]. Further, in experimen-
tal studies, PPAR-gamma inhibited proliferation in ER+
breast cancer cell lines [34] and ethanol inhibited PPAR-
gamma dependent transcriptional activation [35]. Taken
together, downregulation of the PPAR-gamma signaling
pathway is consistent with the observed increase in prolif-
eration in our data. In addition, lower lipid metabolism
was observed among ER+ tumor-adjacent normal tissues
in the current dataset. If replicated, this finding suggests
that alcohol consumption disrupts lipid metabolism, pro-
viding another possible link to alcohol-related breast
pathogenesis.
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Among the hypothesized mechanisms through which
alcohol consumption increases breast cancer risk, par-
ticularly ER+ disease, the most studied pathway is estro-
gen metabolism with supporting evidence from
intervention studies that alcohol drinking is associated

with increases in circulating estrogens [5, 6]. In experi-
mental studies, ER-mediated estrogen signaling can in-
crease cell proliferation that in turn can induce genetic
mutations [36, 37], while estrogen metabolites, inde-
pendent of ER signaling, also can cause DNA damage

Table 5 Top 10 enriched gene setsa by alcohol consumptionb in tumor-adjacent normal samples in the NHS and the NHSII

Pathway-defined gene set Number of enriched genes NES FDR

ER+ tumor-adjacent normal tissues

Upregulated

KEGG_OLFACTORY_TRANSDUCTION 153 1.97 0.04

Downregulated

REACTOME_TCA_CYCLE_AND_RESPIRATORY_ELECTRON_TRANSPORT 123 −2.33 <0.001

REACTOME_SIGNALING_BY_WNT 60 −2.33 <0.001

REACTOME_PYRUVATE_METABOLISM_AND_CITRIC_ACID_TCA_CYCLE 39 −2.30 <0.001

REACTOME_CTNNB1_PHOSPHORYLATION_CASCADE 15 −2.28 <0.001

KEGG_FOCAL_ADHESION 186 −2.27 <0.001

BIOCARTA_RHO_PATHWAY 30 −2.27 <0.001

BIOCARTA_INTEGRIN_PATHWAY 36 −2.26 <0.001

BIOCARTA_PYK2_PATHWAY 27 −2.26 <0.001

KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION 51 −2.25 <0.001

REACTOME_FATTY_ACID_TRIACYLGLYCEROL_AND_KETONE_BODY_METABOLISM 151 −2.24 1.55E-04

ER- tumor-adjacent normal

Up-regulated

REACTOME_METABOLISM_OF_MRNA 206 2.87 <0.001

REACTOME_METABOLISM_OF_RNA 248 2.79 <0.001

REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX 106 2.66 <0.001

REACTOME_INFLUENZA_LIFE_CYCLE 134 2.65 <0.001

REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION 104 2.64 <0.001

REACTOME_TRANSLATION 144 2.63 <0.001

REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE 108 2.62 <0.001

REACTOME_TRANSPORT_OF_MATURE_TRANSCRIPT_TO_CYTOPLASM 51 2.61 <0.001

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 132 2.60 <0.001

REACTOME_MRNA_PROCESSING 151 2.59 <0.001

Down-regulated

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 192 −2.52 <0.001

REACTOME_GPCR_LIGAND_BINDING 297 −2.49 <0.001

REACTOME_TRANSPORT_OF_GLUCOSE_AND_OTHER_SUGARS_BILE_SALTS_AND_ORGANIC
_ACIDS_METAL_IONS_AND_AMINE_COMPOUNDS

76 −2.36 <0.001

REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS 212 −2.29 4.14E-04

REACTOME_POTASSIUM_CHANNELS 86 −2.30 5.18E-04

REACTOME_CYTOCHROME_P450_ARRANGED_BY_SUBSTRATE_TYPE 37 −2.20 2.04E-03

GENERATION_OF_A_SIGNAL_INVOLVED_IN_CELL_CELL_SIGNALING 27 −2.14 3.22E-03

REACTOME_VOLTAGE_GATED_POTASSIUM_CHANNELS 36 −2.14 3.29E-03

G_PROTEIN_SIGNALING_COUPLED_TO_CYCLIC_NUCLEOTIDE_SECOND_MESSENGER 83 −2.12 3.50E-03

REACTOME_G_ALPHA_I_SIGNALLING_EVENTS 147 −2.12 3.50E-03

ER estrogen receptor, NHS Nurses’ Health Study, NES normalized enrichment score, FDR false discovery rate
aTop 10 ranked gene sets at FDR <0.05 are shown for upregulation and downregulation, respectively
bEnriched gene sets for comparison of recent alcohol consumption 10+ vs. 0 g/day
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[37]. Although our data are consistent with estrogen/ER
signaling mediated increased proliferation and DNA
damage, we did not find alcohol intake to be associated
with increased expression of specific estrogen-related
genes or gene sets in ER+ tumors or tumor-adjacent
normal tissue. The reason is unclear. To what extent
alcohol-associated estrogen metabolism occurs in breast
tissue in cancer-free women and whether it would be
preserved in breast tissue during tumor progression is
not known. In a recent study that explored parity-
associated gene expression signatures, the signature
identified in normal breast tissue was preserved in ER+
but not in ER- breast tumors [13]. Further, as shown in
alcohol intervention studies with a crossover study de-
sign [5, 6], the alcohol-associated increases in circulating
estrogen or estrogen metabolite levels are a relatively
acute alcohol effect. Whether alcohol-induced estrogen
metabolism occurring in breast tissue is similarly short
term or more long lasting is not known, and could have
influenced our ability to detect an association.
Among ER- tumors, recent alcohol consumption was

also linked to increases in proliferation. In addition to
cell cycle upregulation, significant increases in transla-
tional and post-translational modification were observed,
which may be associated with alterations in cell cycle
and regulation of cell growth [38]. However, a prior ex-
perimental study reported that ethanol only induced
proliferation in ER+ but not ER- breast cancer cell lines
[31]. The observation of alcohol-related proliferation in
both ER+ and ER- tumors in our data suggests that
alcohol-induced proliferation may not exclusively act
through estrogen metabolism, as no pathway-defined
gene sets related to estrogen metabolism were signifi-
cantly enriched by alcohol intake.
Compared to the enrichment signals observed among ER

+ tumors, a distinct enrichment was found in ER- tumors:
alcohol intake was associated with upregulation in cytokine
signaling including IFN signaling and TGF-β signaling

pathways. Alcohol is known to modulate the immune sys-
tem in a complex way. In animal models, chronic ethanol
exposure was shown to alter cytokine levels (e.g. TNF-α,
TGF-β, IL-6) in a variety of tissues, including lung, liver and
brain [39], although breast tissue was not assessed. In a
population study of over 1300 women, circulating IL-6 levels
significantly increased among women consuming at least
one alcoholic drink per day, while no increase was reported
among women with light alcohol intake (i.e. less than one
drink/day) [40]. In addition, cytokines play an important role
in breast tumor growth and progression [41, 42]. Expression
levels of multiple cytokines were higher in ER- compared to
ER+ breast tumors, including IFN-γ, TNF-α, and IL-6 and
IL-8 [43]. Further, breast tumor ER expression may be an
important mediator of the transition of TGF-β from tumor
suppression to tumor promotion: loss of ER expression (i.e.
in ER- tumor cells) and loss of hormonally controlled
growth may lead to an increased tumor promoting effect of
TGF-β [44]. Interestingly, the significantly enriched
pathway-defined gene sets identified in ER- tumors had a
consistent enrichment pattern and even stronger enrich-
ment signals among ER- tumor-adjacent normal tissues,
while no similarities were observed in enrichment signals
between ER+ tumors and ER+ tumor-adjacent normal tis-
sues. One possible reason is that ER- tumors in this dataset
were on average more advanced than ER+ tumors (i.e. larger
in size, higher in grade and at a more advanced stage); thus,
although the tumor-adjacent normal tissues were defined as
generally > 1 cm from the tumor edge, ER- tumors may have
more strongly influenced adjacent normal tissues. However,
the fact that adjacent normal tissues may contain informa-
tion on the environment surrounding the tumors may not
directly relate to alcohol consumption; thus, the exact rea-
son for the consistent enrichment pattern in ER- tumors
and adjacent normal tissues is not clear. As this is the first
ever assessment of alcohol intake and gene expression in
both tumor and adjacent normal tissues, replication of this
finding in other studies will be important.

Table 6 Differential expression of alcohol metabolism genes in tumor and tumor-adjacent normal tissues in the NHS and the NHSII

ER+ tumors vs. tumor-adjacent normal tissues ER- tumors vs. tumor-adjacent normal tissues

Probeset ID Entrez ID Symbol Log2(FC) t valuea FDRb Log2(FC) t valuea FDRb

TC0401141 125 ADH1B −1.33 −21.1 2.92E-61 −1.32 −11.0 1.59E-14

TC0901044 216 ALDH1A1 −0.61 −16.7 2.77E-44 −0.58 −8.6 6.93E-11

TC0401142 126 ADH1C −0.25 −14.6 3.80E-36 −0.29 −7.6 3.08E-09

TC1100272 847 CAT −0.34 −10.2 1.99E-20 −0.32 −4.2 6.20E-04

TC1200702 217 ALDH2 −0.18 −7.0 6.53E-11 −0.20 −4.0 1.01E-03

TC0401137 128 ADH5 −0.11 −4.8 7.69E-06 −0.04 −0.7 6.00E-01

TC1000709 1571 CYP2E1 −0.02 −1.9 8.21E-02 −0.02 −0.6 7.02E-01

ER estrogen receptor, NHS Nurses’ Health Study, FDR false discovery rate, FC fold change
aThe t values were obtained from paired t tests of tumor and adjacent normal tissues: 357 pairs of ER+ tumor and ER+ tumor-adjacent normal tissues, and 86 pairs
for ER- tumor and ER- tumor-adjacent normal, respectively
bFDR was calculated across all the 25,979 probes
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Although none of the known alcohol metabolism
genes were differentially expressed by alcohol intake in
breast tumors in this study, several of these genes, in-
cluding ADH1B, ADH1C, ALDH2 and ALDH1A1 were
substantially downregulated in tumors compared to
tumor-adjacent normal tissues, regardless of tumor ER
expression. Our results are consistent with a previous
study that observed class I ADH (including ADH1A,
ADH1B and ADH1C) to be more highly expressed, at
both mRNA and protein levels, in normal breast tissues
from cancer-free women than in invasive breast tumor
tissues [45]. Despite no significant enrichment of
pathway-defined gene sets involved in alcohol metabol-
ism according to alcohol intake, it was interesting to see
that recent alcohol consumption (i.e. 10+ g/day) was
marginally associated with significant downregulation in
retinol metabolism (i.e. KEGG_RETINOL_METABO-
LISM) among ER+ tumors (FDR = 0.11; also replicated
in TCGA) because ADH enzymes are also involved in
retinol metabolism [46]. Abnormal retinoid metabolism
has been observed in several cancers, including breast
cancer [47].
Our study, using tumor genome-wide gene expression

profiling provided novel insights of alcohol-related mo-
lecular pathways in breast tumors. The evaluation was
conducted within large prospective cohort studies with
detailed data on alcohol consumption, covariates, and
cancer diagnosis and tumor characteristics. In addition,
this study has a sizable number of breast tumor and
tumor-adjacent normal specimens. Further, our results,
using microarrays, were validated in another platform
using RNA-Seq. Finally, in addition to single-probe ana-
lysis, we conducted pathway analysis (i.e. GSEA), which
has several advantages over single-gene analysis. For ex-
ample, it makes interpretation easier by focusing on
pathways and biological processes rather than single
high-scoring genes which may be poorly annotated.
GSEA also makes it possible to detect modest expression
changes in individual genes as it can increase the signal-
to-noise ratio. However, one drawback in this GSEA is
that the P value estimation using gene permutation
under GSEA “Preranked”’ function does not take into
account correlation among genes [48].
Our study also has limitations. One limitation is the use

of FFPE tissues for gene expression profiling, because
FFPE can make retrieval of RNA challenging due to chem-
ical modification of RNA and related RNA degradation.
However, archived FFPE samples have been shown com-
parable to fresh-frozen samples in assessing differential
expression in lung, colon and kidney tissues [49]. In
addition, our results were validated in a dataset derived
from fresh-frozen breast tumor samples that were part of
TCGA. However, there were differences in patient charac-
teristics (e.g. age) and tumor characteristics (i.e. tumor

stage) between the NHS and TCGA datasets. Another
limitation is the lack of a validation dataset for tumor-
adjacent normal tissues. Further, women participating in
this study had relatively low levels of alcohol consumption
and thus we were not able to evaluate the effect of moder-
ate to heavy alcohol intake on tumor gene expression. In-
deed, in epidemiologic studies, compared to women
without recent alcohol intake, those with recent consump-
tion 10–20 g/day had only ~10% increased breast cancer
risk while those consuming at least 30 g/day had > 30% in-
creased risk [3]. Finally, the tumor gene expression profil-
ing here may be a mixed profiling of malignant epithelial
and stromal cells. Laser capture microdissection can be
used to isolate specific cell types; however, it was not feas-
ible considering the large sample size in this study.

Conclusions
Our data suggest that alcohol consumption is associated
with increased proliferation and lower lipid metabolism
among ER+ breast tumors while among ER- breast tumors,
alcohol consumption is not only linked to increased prolif-
eration but also upregulation in cytokine signaling, particu-
larly IFN and TGF-β signaling. Future studies of gene
expression profiling in normal breast tissues from cancer-
free women are of particular interest. Alcohol consumption
is not considered a prognostic factor for breast cancer re-
currence or death [50]. Assessment of the effect of alcohol
consumption on normal breast tissues, together with profil-
ing data from breast tumors and/or tumor-adjacent normal
tissues will be critical in further elucidating the alcohol-
related breast carcinogenesis. Furthermore, as alcohol is
known to impact one-carbon metabolism and induce aber-
rant DNA methylation [51], integrating DNA methylation
and gene expression data may provide deeper insights into
the underlying biology of the association between alcohol
and breast cancer.
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