112 research outputs found

    Delayed-type hypersensitivity in classic Kaposi sarcoma patients and controls

    Get PDF
    BACKGROUND: Immune perturbation likely affects the development of Kaposi sarcoma (KS) among people infected with the KS-associated herpesvirus (KSHV). We tested whether KSHV-seropositive individuals or cases of classic KS (cKS), which typically originates in the leg, had differing delayed-type hypersensitivity (DTH) in the forearm or leg. METHODS: Mantoux DTH with three antigens (Candida, tetanus, PPD) was performed on the forearm and leg of 15 cKS cases, 14 KSHV-positives without KS, and 15 KSHV-negative controls. The diameters of induration responses were compared by group and body site. RESULTS: Leg DTH was greater than forearm DTH among controls (mean difference 5.6 mm, P\ubc0.0004), whereas this was not observed in cKS cases ( 2.2 mm, P\ubc0.32) or KSHV-positives (0.5 mm, P\ubc0.56). Leg-minus-forearm DTH difference was greater in controls compared with cKS cases (P\ubc0.004) and KSHV-positives (P\ubc0.002). Leg-plus-forearm DTH was similar in controls (mean 28.2 mm) and cKS cases (24.5 mm, P\ubc0.60), but it was reduced in KSHV-positives (11.8 mm, P\ubc0.02), particularly in the leg (P\ubc0.004) and marginally in the forearm (P\ubc0.07). CONCLUSION: KS cases had weaker DTH only in the leg, whereas both body sites appeared weaker in KSHV-positives without KS. Both systemic and regional immune alterations may influence the development of this malignancy

    A Step Forward in Molecular Diagnostics of Lyssaviruses – Results of a Ring Trial among European Laboratories

    Get PDF
    Rabies is a lethal and notifiable zoonotic disease for which diagnostics have to meet the highest standards. In recent years, an evolution was especially seen in molecular diagnostics with a wide variety of different detection methods published. Therefore, a first international ring trial specifically designed on the use of reverse transcription polymerase chain reaction (RT-PCR) for detection of lyssavirus genomic RNA was organized. The trial focussed on assessment and comparison of the performance of conventional and real-time assays. In total, 16 European laboratories participated. All participants were asked to investigate a panel of defined lyssavirus RNAs, consisting of Rabies virus (RABV) and European bat lyssavirus 1 and 2 (EBLV-1 and -2) RNA samples, with systems available in their laboratory. The ring trial allowed the important conclusion that conventional RT-PCR assays were really robust assays tested with a high concordance between different laboratories and assays. The real-time RT-PCR system by Wakeley et al. (2005) in combination with an intercalating dye, and the combined version by Hoffmann and co-workers (2010) showed good sensitivity for the detection of all RABV samples included in this test panel. Furthermore, all used EBLV-specific assays, real-time RT-PCRs as well as conventional RT-PCR systems, were shown to be suitable for a reliable detection of EBLVs. It has to be mentioned that differences were seen in the performance between both the individual RT-PCR systems and the laboratories. Laboratories which used more than one molecular assay for testing the sample panel always concluded a correct sample result. Due to the markedly high genetic diversity of lyssaviruses, the application of different assays in diagnostics is needed to achieve a maximum of diagnostic accuracy. To improve the knowledge about the diagnostic performance proficiency testing at an international level is recommended before using lyssavirus molecular diagnostics e.g. for confirmatory testing

    Inhaled steroid/tobacco smoke particle interactions: a new light on steroid resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhaled steroid resistance is an obstacle to asthma control in asthmatic smokers. The reasons of this phenomenon are not yet entirely understood. Interaction of drug particles with environmental tobacco smoke (ETS) could change the aerodynamic profile of the drug through the particle coagulation phenomenon. Aim of the present study was to examine whether steroid particles interact with smoke when delivered in the presence of ETS.</p> <p>Methods</p> <p>Beclomethasone-hydrofluoralkane (BDP-HFA) pMDI particle profile was studied after a single actuation delivered in ambient air or in the presence of ETS in an experimental chamber using a light scattering Optical Particle Counter capable of measuring the concentrations of particle sized 0.3–1.0, 1.1–2.0, 2.1–3.0, 3.1–4.0, 4.1–5.0, and > 5.1 ΞΌm in diameter with a sampling time of one second. The number of drug particles delivered after a single actuation was measured as the difference between total particle number after drug delivery and background particle number. Two groups of experiments were carried out at different ambient background particle concentrations. Two-tail Student's t-test was used for statistical analysis.</p> <p>Results</p> <p>When delivered in ambient air, over 90% of BDP-HFA particles were found in the 0.3–1.0 ΞΌm size class, while particles sized 1.1–2.0 ΞΌm and 2.1–3.0 represented less than 6.6% and 2.8% of total particles, respectively. However, when delivered in the presence of ETS, drug particle profile was modified, with an impressive decrease of 0.3–1.0 ΞΌm particles, the most represented particles resulting those sized 1.1–2.0 ΞΌm (over 66.6% of total particles), and 2.1–3.0 ΞΌm particles accounting up to 31% of total particles.</p> <p>Conclusion</p> <p>Our data suggest that particle interaction between inhaled BDP-HFA pMDI and ETS takes place in the first few seconds after drug delivery, with a decrease in smaller particles and a concurrent increase of larger particles. The resulting changes in aerosol particle profile might modify regional drug deposition with potential detriment to drug efficacy, and represent a new element of steroid resistance in smokers. Although the present study does not provide any functional or clinical assessment, it might be useful to advise smokers and non smokers with obstructive lung disease such as asthma or COPD, to avoid to act inhaled drugs in the presence of ETS in order to obtain the best therapeutic effect.</p

    Panel 4 : Report of the Microbiology Panel

    Get PDF
    Objective. To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources. PubMed database of the National Library of Medicine. Review Methods. Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions. Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice. (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.Peer reviewe

    Emerging Technologies for the Detection of Rabies Virus: Challenges and Hopes in the 21st Century

    Get PDF
    The diagnosis of rabies is routinely based on clinical and epidemiological information, especially when exposures are reported in rabies-endemic countries. Diagnostic tests using conventional assays that appear to be negative, even when undertaken late in the disease and despite the clinical diagnosis, have a tendency, at times, to be unreliable. These tests are rarely optimal and entirely dependent on the nature and quality of the sample supplied. In the course of the past three decades, the application of molecular biology has aided in the development of tests that result in a more rapid detection of rabies virus. These tests enable viral strain identification from clinical specimens. Currently, there are a number of molecular tests that can be used to complement conventional tests in rabies diagnosis. Indeed the challenges in the 21st century for the development of rabies diagnostics are not of a technical nature; these tests are available now. The challenges in the 21st century for diagnostic test developers are two-fold: firstly, to achieve internationally accepted validation of a test that will then lead to its acceptance by organisations globally. Secondly, the areas of the world where such tests are needed are mainly in developing regions where financial and logistical barriers prevent their implementation. Although developing countries with a poor healthcare infrastructure recognise that molecular-based diagnostic assays will be unaffordable for routine use, the cost/benefit ratio should still be measured. Adoption of rapid and affordable rabies diagnostic tests for use in developing countries highlights the importance of sharing and transferring technology through laboratory twinning between the developed and the developing countries. Importantly for developing countries, the benefit of molecular methods as tools is the capability for a differential diagnosis of human diseases that present with similar clinical symptoms. Antemortem testing for human rabies is now possible using molecular techniques. These barriers are not insurmountable and it is our expectation that if such tests are accepted and implemented where they are most needed, they will provide substantial improvements for rabies diagnosis and surveillance. The advent of molecular biology and new technological initiatives that combine advances in biology with other disciplines will support the development of techniques capable of high throughput testing with a low turnaround time for rabies diagnosis

    IlsA, A Unique Surface Protein of Bacillus cereus Required for Iron Acquisition from Heme, Hemoglobin and Ferritin

    Get PDF
    The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts

    The role of tenascin-C in tissue injury and tumorigenesis

    Get PDF
    The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer

    Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes

    Full text link
    • …
    corecore