13 research outputs found

    Decreasing intensity of open-ocean convection in the Greenland and Iceland seas

    Get PDF
    The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC

    Arctic Sea Level Budget Assessment during the GRACE/Argo Time Period

    Get PDF
    Sea level change is an important indicator of climate change. Our study focuses on the sea level budget assessment of the Arctic Ocean using: (1) the newly reprocessed satellite altimeter data with major changes in the processing techniques; (2) ocean mass change data derived from GRACE satellite gravimetry; (3) and steric height estimated from gridded hydrographic data for the GRACE/Argo time period (2003–2016). The Beaufort Gyre (BG) and the Nordic Seas (NS) regions exhibit the largest positive trend in sea level during the study period. Halosteric sea level change is found to dominate the area averaged sea level trend of BG, while the trend in NS is found to be influenced by halosteric and ocean mass change effects. Temporal variability of sea level in these two regions reveals a significant shift in the trend pattern centered around 2009–2011. Analysis suggests that this shift can be explained by a change in large-scale atmospheric circulation patterns over the Arctic. The sea level budget assessment of the Arctic found a residual trend of more than 1.0 mm/yr. This nonclosure of the sea level budget is further attributed to the limitations of the three above mentioned datasets in the Arctic region

    Toward Improved Estimation of the Dynamic Topography and Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of GOCE

    No full text
    The Norwegian Sea circulation plays a key role in maintaining the mild climate of the northwestern Europe via the transport of warm Atlantic Water pole-ward. The first paper addresses the advective currents connecting the two branches of the Norwegian Atlantic Current and shows the general spin up of the Norwegian Sea circulation during winter with the exception of the flow over the Mohn Ridge. The variability in the surface velocities in the Norwegian Sea is found to be deep reaching, which supports the use of altimetry to monitor the variability of the poleward transport of Atlantic Water. A strengthening and weakening of the Atlantic inflow east of the Faroe Islands has a consistent response along the entire slope current. However, a stronger western inflow, observed north of the Faroe Islands, is associated with more flow of Atlantic Water into the slope current. This finding suggest that a substantial fraction of Atlantic Water that eventually enters the Barents Sea or the Arctic through the Fram Strait, may originate from the western inflowing branch of Atlantic Water to the Nordic Seas, and that the two branches of northward flowing Atlantic Water cannot be considered as separate flows. Paper 2 examines the influence of the surface circulation, eddy activity and local heat loss on the spatial distribution and temporal evolution of dense water formation in the Lofoten Basin. Evidence of intrusion of Atlantic Water into the central Lofoten Basin due to buoyant waters in the eastern part of the basin is found. With the support of hydrographic and satellite datasets, the concept of separate western and eastern regions of the Lofoten Basin is introduced and a link between the western Lofoten Basin and Faroe Shetland overflow waters is identified. Paper 3 addresses an anomalous anticyclonic vortex in the Nordic Seas, which is situated in the western Lofoten Basin. The vortex’ surface and vertical characteristics on seasonal, inter-annual, and climatological time-scales are quantified, relevant forcing mechanisms are addressed, and its uniqueness in the Nordic Seas is documented. In the final paper, a new mean dynamic topography (MDT) is estimated for the North Atlantic and the Arctic from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite gravity anomaly data. The new GOCE-based MDT is assessed and compared to independent steric height observations, other state-of-the-art MDTs and three coupled sea-ice-ocean models, showing its usefulness in studies of high latitude ocean circulation

    Atlantic origin of observed and modelled freshwater anomalies in the Nordic Seas

    No full text
    Between 1965 and 1990, the waters of the Nordic Seas and the subpolar basins of the North Atlantic Ocean freshened substantially1. The Arctic Ocean also became less saline over this time, as a consequence of increasing runoff1, 2, 3, 4, but it is not clear whether flow from the Arctic Ocean was the main source of the Nordic Seas salinity anomaly. As a region of deep-water formation, the Nordic Seas are central to the Atlantic meridional overturning circulation, but this process is inhibited if the surface salinity is too low2. Here we use the instrumental record of Nordic Seas hydrography, along with a global ocean–sea-ice model hindcast simulation, to identify the sources and magnitude of freshwater that has accumulated in the Nordic Seas since 1950. We find that the freshwater anomalies within the Nordic Seas can mostly be explained by less salt entering the southern part of the basin with the relatively saline Atlantic inflow, with seemingly little contribution from the Arctic Ocean. We conclude that hydrographic changes in the Nordic Seas are primarily related to changes in the Atlantic Ocean. We infer that if the Atlantic inflow and Nordic Seas both freshen similarly, this would render the Atlantic meridional overturning circulation relatively insensitive to Nordic Seas freshwater content

    Avis de recherche :

    Get PDF
    The Atlantic Meridional Overturning Circulation (AMOC) is part of a global redistribution system in the ocean that carries vast amounts of mass, heat, and freshwater. Within the AMOC, water mass transformations in the Nordic Seas (NS) and the overflows across the Greenland-Scotland Ridge (GSR) contribute significantly to the overturning mass transport. The deep NS are separated by the GSR from direct exchange with the subpolar North Atlantic. Two deeper passages, Denmark Strait (DS, sill depth 630 m) and Faroe Bank Channel (FBC, sill depth 840 m), constrain the deep outflow. The outflow transports are assumed to be governed by hydraulic control (Whitehead 1989, 1998). According to the circulation scheme by Dickson and Brown (1994), there is an overflow of 2.9 Sv (1 Sv = 1 Sverdrup = 106 m3 s–1) through DS, 1.7 Sv through FBC and another 1 Sv from flow across the Iceland%Faroe Ridge (IFR). To the south of the GSR, the overflows sink to depth and then spread along the topography, eventually merging to form a deep boundary current in the western Irminger Sea. During the descent, the dense bottom water flow doubles its volume by entrainment of ambient waters (e.g. Price and Baringer 1994) so that there is a deep water transport of 13.3 Sv once the boundary current reaches Cape Farvel (Dickson and Brown 1994). Thus the overflows and the overflow-related part of the AMOC account for more than 70% of the maximum total overturning, which is estimated from observations to be about 18 Sv (e.g. Macdonald 1998

    The inflow of Atlantic water, heat, and salt to the Nordic Seas across the Greenland-Scotland Ridge

    No full text
    The flow of warm, saline water from the Atlantic Ocean (the Atlantic inflow or just inflow) across the Greenland-Scotland Ridge into the Nordic Seas and the Arctic Ocean (collectively termed the Arctic Mediterranean) is of major importance, both for the regional climate and for the global thermohaline circulation. Through its heat transport, it keeps large areas north of the Ridge much warmer, than they would otherwise have been, and free of ice (Seager et al. 2002). At the same time, the Atlantic inflow carries salt northwards, which helps maintaining high densities in the upper layers; a precondition for thermohaline ventilation. The Atlantic inflow is carried by three separate branches, which here are termed: the Iceland branch (the North Icelandic Irminger Current), the Faroe branch (the Faroe Current), and the Shetland branch (Fig. 1.1). These are all characterized by being warmer and more saline than the waters that they meet after crossing the Ridge, although both temperature and salinity decrease as we go from the Shetland branch, through the Faroe branch, to the Iceland branch. All these branches therefore carry, not only water, but also heat and salt across the Ridge.</p
    corecore