1,164 research outputs found

    Flow-induced elastic anisotropy of metallic glasses

    Get PDF
    As-cast bulk metallic glasses are isotropic, but anisotropy can be induced by thermomechanical treatments. For example, the diffraction halo in the structure function S(Q) observed in transmission becomes elliptical (rather than circular) after creep in uniaxial tension or compression. Published studies associate this with frozen-in anelastic strain and bond-orientational anisotropy. Results so far are inconsistent on whether viscoplastic flow of metallic glasses can induce anisotropy. Preliminary diffraction data suggest that the anisotropy, if any, is very low, while measurements of the elastic properties suggest that there is induced anisotropy, opposite in sign to that due to anelastic strain. We study three bulk metallic glasses, Ce65Al10Cu20Co5, La55Ni10Al35, and Pd40Ni30Cu10P20. By using resonant ultrasound spectroscopy to determine the full elasticity tensor, the effects of relaxation and rejuvenation can be reliably separated from uniaxial anisotropy (of either sign). The effects of viscoplastic flow in tension are reported for the first time. We find that viscoplastic flow of bulk metallic glasses, particularly in tension, can induce significant anisotropy that is distinct from that associated with frozen-in anelastic strain. The conditions for inducing such anisotropy are explored in terms of the Weissenberg number (ratio of relaxation times for primary relaxation and for shear strain rate). There is a clear need for further work to characterize the structural origins of flow-induced anisotropy and to explore the prospects for improved mechanical and other properties through induced anisotropy.This research was supported by the Engineering and the Engineering and Physical Sciences Research Council, UK (grant EP/I035404/1). Y.H.S. acknowledges support from a China Scholarship Council (CSC) scholarship. The authors thank Z. Lu, H. Y. Bai and W. H. Wang for the supply of the Ce65Al10Cu20Co5 and La55Ni20Al25 metallic glasses.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.actamat.2016.04.02

    Anomalous material-dependent transport of focused, laser-driven proton beams.

    Get PDF
    Intense lasers can accelerate protons in sufficient numbers and energy that the resulting beam can heat materials to exotic warm (10 s of eV temperature) states. Here we show with experimental data that a laser-driven proton beam focused onto a target heated it in a localized spot with size strongly dependent upon material and as small as 35 μm radius. Simulations indicate that cold stopping power values cannot model the intense proton beam transport in solid targets well enough to match the large differences observed. In the experiment a 74 J, 670 fs laser drove a focusing proton beam that transported through different thicknesses of solid Mylar, Al, Cu or Au, eventually heating a rear, thin, Au witness layer. The XUV emission seen from the rear of the Au indicated a clear dependence of proton beam transport upon atomic number, Z, of the transport layer: a larger and brighter emission spot was measured after proton transport through the lower Z foils even with equal mass density for supposed equivalent proton stopping range. Beam transport dynamics pertaining to the observed heated spot were investigated numerically with a particle-in-cell (PIC) code. In simulations protons moving through an Al transport layer result in higher Au temperature responsible for higher Au radiant emittance compared to a Cu transport case. The inferred finding that proton stopping varies with temperature in different materials, considerably changing the beam heating profile, can guide applications seeking to controllably heat targets with intense proton beams

    Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane

    Get PDF
    Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and “snapshots” to reveal LPS translocation steps across the outer membrane

    Graphene for spintronics: giant Rashba splitting due to hybridization with Au

    Full text link
    Graphene in spintronics has so far primarily meant spin current leads of high performance because the intrinsic spin-orbit coupling of its pi-electrons is very weak. If a large spin-orbit coupling could be created by a proximity effect, the material could also form active elements of a spintronic device such as the Das-Datta spin field-effect transistor, however, metal interfaces often compromise the band dispersion of massless Dirac fermions. Our measurements show that Au intercalation at the graphene-Ni interface creates a giant spin-orbit splitting (~100 meV) in the graphene Dirac cone up to the Fermi energy. Photoelectron spectroscopy reveals hybridization with Au-5d states as the source for the giant spin-orbit splitting. An ab initio model of the system shows a Rashba-split dispersion with the analytically predicted gapless band topology around the Dirac point of graphene and indicates that a sharp graphene-Au interface at equilibrium distance will account for only ~10 meV spin-orbit splitting. The ab initio calculations suggest an enhancement due to Au atoms that get closer to the graphene and do not violate the sublattice symmetry.Comment: 16 pages (3 figures) + supplementary information 16 pages (14 figures

    Inclusive double-quarkonium production at the Large Hadron Collider

    Full text link
    Based on the nonrelativistic QCD (NRQCD) factorization formalism, we investigate inclusive productions of two spin-triplet S-wave quarkonia pp->2J/psi+X, 2Upsilon+X, and J/psi+Upsilon+X at the CERN Large Hadron Collider. The total production rates integrated over the rapidity (y) and transverse-momentum (p_T) ranges |y|<2.4 and p_T<50 GGeV are predicted to be sigma[pp->2J/psi+X] = 22 (35) nb, sigma[pp->2Upsilon+X] = 24 (49) pb, and sigma[pp->J/psi+Upsilon+X] = 7 (13) pb at the center-of-momentum energy sqrt{s} = 7 (14) TeV. In order to provide predictions that can be useful in both small- and large-p_T regions, we do not employ the fragmentation approximation and we include the spin-triplet S-wave color-singlet and color-octet channels for each quarkonium final state at leading order in the strong coupling. The p_T distributions of pp->2J/psi+X and 2Upsilon+X in the low-p_T region are dominated by the color-singlet contributions. At leading order in the strong coupling, the color-singlet channel is absent for pp->J/psi+Upsilon+X. Therefore, the process pp->J/psi+Upsilon+X may provide a useful probe to the color-octet mechanism of NRQCD.Comment: 26 pages, 7 figures, 3 tables, version published in JHE

    Unique reporter-based sensor platforms to monitor signalling in cells

    Get PDF
    Introduction: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. &lt;p/&gt;Methods: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. &lt;p/&gt;Findings: We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. &lt;p/&gt;Conclusions: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters

    MR imaging features of benign retroperitoneal extra-adrenal paragangliomas

    Get PDF
    The goal of this study was to retrospectively review the magnetic resonance imaging (MRI) features of retroperitoneal extra-adrenal paragangliomas and to evaluate the diagnostic capabilities of MRI. Twenty-four patients with confirmed benign retroperitoneal extra-adrenal paragangliomas who underwent preoperative MRI and surgical resection were enrolled. The patients’ clinical characteristics and MRI features were reviewed by two radiologists. There were no significant differences in the qualitative and quantitative MRI features were determined by the reviewers. High signal intensity in T2- weighted imaging (T2WI) and diffusion-weighted imaging (DWI) was observed in all tumors. In contrast T1-weighted imaging (T1WI) in the arterial phase, 83.33% of the tumors were clearly enhanced. In 87.5% of cases, a persistent enhancement pattern was observed in the venous and delayed phases, and 12.5% of tumors showed a “washout” pattern. The tumor capsule, intratumoral septum and degenerations were visualized in the tumors and may be helpful in the qualitative diagnosis of extraadrenal paragangliomas in MRI. MRI was useful in locating the position, determining the tumor ranges and visualizing the relationship between the tumors and adjacent structures. The presence of typical clinical symptoms and positivity of biochemical tests are also important factors in making an accurate preoperative diagnosis

    Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa

    Get PDF
    Retinitis pigmentosa (RP), the most frequent form of inherited retinal dystrophy is characterized by progressive photoreceptor degeneration. Many genes have been implicated in RP development, but several others remain to be identified. Using a combination of homozygosity mapping, whole-exome and targeted next-generation sequencing, we found a novel homozygous nonsense mutation in SAMD11 in five individuals diagnosed with adult-onset RP from two unrelated consanguineous Spanish families. SAMD11 is ortholog to the mouse major retinal SAM domain (mr-s) protein that is implicated in CRX-mediated transcriptional regulation in the retina. Accordingly, protein-protein network analysis revealed a significant interaction of SAMD11 with CRX. Immunoblotting analysis confirmed strong expression of SAMD11 in human retina. Immunolocalization studies revealed SAMD11 was detected in the three nuclear layers of the human retina and interestingly differential expression between cone and rod photoreceptors was observed. Our study strongly implicates SAMD11 as novel cause of RP playing an important role in the pathogenesis of human degeneration of photoreceptors.This work was supported by several grants from the Spanish Centre for Biomedical Network Research on Rare Diseases (CIBERER)(06/07/0036), Instituto de Salud Carlos III (ISCIII, Spanish Ministry of Health)/FEDER, including FIS (PI013/00226) and RETICS (RD09/0076/00101 and RD12/0034/0010), Ministry of Economy and Competitiveness (MINECO), including FEDER (BFU2012-36845), and BIO2011-27069, Conselleria de Educació of the Valencia Community (PROMETEOII/2014/025), Spanish National Organization of the Blind (ONCE) and the Spanish Fighting Blindness Foundation (FUNDALUCE). M.C. was sponsored by the Miguel Servet Program for Researchers in the Spanish National Health Service (CP12/03256) and RSA by Sara Borrel Postdoctoral Program (CD12/00676), both from the ISCIII/FEDER. A.A-F. was sponsored by CIBERER, RPC is supported by Fundación Conchita Rábago (FCR), L.C is sponsored by RETICS (RD12/0034/0010) from ISCIII and L.d.S. was supported by CAPES Foundation, Ministry of Education of Brazil

    Berberine Radiosensitizes Human Esophageal Cancer Cells by Downregulating Homologous Recombination Repair Protein RAD51

    Get PDF
    Esophageal squamous cell carcinomas (ESCC) have poor prognosis. While combined modality of chemotherapy and radiotherapy increases survival, most patients die within five years. Development of agents that confer cancer cell-specific chemo- and radiosensitivity may improve the therapy of ESCC. We here reported the discovery of berberine as a potent radiosensitizing agent on ESCC cells. by RNA interference similarly radiosensitized the cancer cells, and, conversely, introduction of exogenous RAD51 was able to significantly counteract the radiosensitizing effect of berberine, thus establishing RAD51 as a key determinant in radiation sensitivity. We also observed that RAD51 was commonly overexpressed in human ESCC tissues, suggesting that it is necessary to downregulate RAD51 to achieve high radio- or chemotherapeutic efficacy of ESCC in clinic, because overexpression of RAD51 is known to confer radio- and chemoresistance.Berberine can effectively downregulate RAD51 in conferring radiosensitivity on esophageal cancer cells. Its clinical application as an adjuvant in chemotherapy and radiotherapy of esophageal cancers should be explored
    corecore