248 research outputs found

    Superconducting fluctuations for three-dimensional anisotropic superconductors in the presence of a magnetic field with arbitrary direction

    Get PDF
    A nonperturbative method for evaluation of thermodynamic scaling functions in the critical region of type-II superconductors, appropriate for high-temperature superconductors, is extended for the case of external magnetic fields with arbitrary angles with respect to the c axis for the case of three-dimensional anisotropic superconductors. An explicit scaling function for the magnetization is presented, discussed, and compared with experimental data from measurements with applied fields along the ab planes56106114611

    Lack of detectable genetic isolation in the cyclic rodent Microtus arvalis despite large landscape fragmentation owing to transportation infrastructures

    Get PDF
    Abstract Although roads are widely seen as dispersal barriers, their genetic consequences for animals that experience large fluctuations in population density are poorly documented. We developed a spatially paired experimental design to assess the genetic impacts of roads on cyclic voles (Microtus arvalis) during a high-density phase in North-Western Spain. We compared genetic patterns from 15 paired plots bisected by three different barrier types, using linear mixed models and computing effect sizes to assess the importance of each type, and the influence of road features like width or the age of the infrastructure. Evidence of effects by roads on genetic diversity and differentiation were lacking. We speculate that the recurrent (each 3–5 generations) episodes of massive dispersal associated with population density peaks can homogenize populations and mitigate the possible genetic impact of landscape fragmentation by roads. This study highlights the importance of developing spatially replicated experimental designs that allow us to consider the large natural spatial variation in genetic parameters. More generally, these results contribute to our understanding of the not well explored effects of habitat fragmentation on dispersal in species showing “boom-bust” dynamics

    Genetic variation in the tau protein phosphatase-2A pathway is not associated with Alzheimer's disease risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tau abnormal hyperphosphorylation and the formation of neurofibrillary tangles in AD brain is the result of upregulation of tau kinases and downregulation of tau phosphatases.</p> <p>Methods</p> <p>In a group of 729 Spanish late-onset Alzheimer's disease (AD) patients and 670 healthy controls, we examined variations into a set of candidate genes (PPP2CA, PPP2R2A, ANP32A, LCMT1, PPME1 and PIN1) in the tau protein phosphatase-2A (PP2A) pathway, to address hypotheses of genetic variation that might influence AD risk.</p> <p>Results</p> <p>There were no differences in the genotypic, allelic or haplotypic distributions between cases and controls in the overall analysis or after stratification by age, gender or APOE Δ4 allele.</p> <p>Conclusion</p> <p>Our negative findings in the Spanish population argue against the hypothesis that genetic variation in the tau protein phosphatase-2A (PP2A) pathway is causally related to AD risk</p

    T cell gene therapy for perforin deficiency corrects cytotoxicity defects and prevents Haemophagocytic Lymphohistiocytosis manifestations

    Get PDF
    BACKGROUND: Mutations in the PRF1 gene account for up to 58% of familial haemophagocytic lymphohistiocytosis (FHL) syndromes. The resulting defects in effector cell cytotoxicity lead to hypercytokinaemia and hyperactivation with inflammation in various organs. OBJECTIVE: To determine whether autologous gene corrected T cells can restore cytotoxic function, reduce disease activity and prevent haemophagocytic lymphohistiocytosis (HLH) symptoms in in vivo models. METHODS: We developed a gammaretroviral vector to transduce murine CD8-T cells in the prf-/- mouse model. To verify functional correction of prf-/- CD8-T cells in vivo, we used a lymphocytic choriomeningitis virus (LCMV) epitope transfected murine lung carcinoma cell tumour model. Further, we challenged gene corrected and uncorrected mice with LCMV. One patient sample was transduced with a PRF1 encoding lentiviral vector to study restoration of cytotoxicity in human cells. RESULTS: We demonstrated efficient engraftment and functional reconstitution of cytotoxicity after intravenous administration of gene corrected prf-/- CD8-T cells into prf-/- mice. In the tumour model, infusion of prf-/- gene corrected CD8-T cells eliminated the tumour as efficiently as the transplant of wild type CD8-T cells. Similarly, mice reconstituted with gene corrected prf-/- CD8-T cells, displayed complete protection from the HLH phenotype after infection with LCMV. Patient cells showed correction of cytotoxicity in human CD8-T cells after transduction. CONCLUSION: These data demonstrate the potential application of T cell gene therapy in reconstituting cytotoxic function and protection against HLH in perforin deficiency

    The Mitochondrial Genome of Toxocara canis

    Get PDF
    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts

    An experimental study of cathodic protection for chloride contaminated reinforced concrete

    Get PDF
    Cathodic protection (CP) is being increasingly used on reinforced concrete structures to protect steel reinforcing bars from corrosion in aggressive conditions. Due to the complexity of environmental conditions, the design specifications in national and international standards are still open to discussion to achieve both sufficient and efficient protection for reinforced concrete structures in engineering practices. This paper reports an experimental research to investigate the influence of chloride content on concrete resistivity, rebar corrosion rate and the performance of CP operation using different current densities. It aims to understand the correlation between the chloride content and concrete resistivity together with the CP current requirement, and to investigate the precision of the CP design criteria in standards

    Towards a Synthetic Chloroplast

    Get PDF
    The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices

    Probing the Role of Protein Surface Charge in the Activation of PrfA, the Central Regulator of Listeria monocytogenes Pathogenesis

    Get PDF
    Listeria monocytogenes is a food-borne intracellular bacterial pathogen capable of causing serious human disease. L. monocytogenes survival within mammalian cells depends upon the synthesis of a number of secreted virulence factors whose expression is regulated by the transcriptional activator PrfA. PrfA becomes activated following bacterial entry into host cells where it induces the expression of gene products required for bacterial spread to adjacent cells. Activation of PrfA appears to occur via the binding of a small molecule cofactor whose identity remains unknown. Electrostatic modeling of the predicted PrfA cofactor binding pocket revealed a highly positively charged region with two lysine residues, K64 and K122, located at the edge of the pocket and another (K130) located deep within the interior. Mutational analysis of these residues indicated that K64 and K122 contribute to intracellular activation of PrfA, whereas a K130 substitution abolished protein activity. The requirement of K64 and K122 for intracellular PrfA activation could be bypassed via the introduction of the prfA G145S mutation that constitutively activates PrfA in the absence of cofactor binding. Our data indicate that the positive charge of the PrfA binding pocket contributes to intracellular activation of PrfA, presumably by facilitating binding of an anionic cofactor

    Single-cell multi-omics analysis of the immune response in COVID-19

    Get PDF
    Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy
    • 

    corecore