241 research outputs found

    VDA, a Method of Choosing a Better Algorithm with Fewer Validations

    Get PDF
    The multitude of bioinformatics algorithms designed for performing a particular computational task presents end-users with the problem of selecting the most appropriate computational tool for analyzing their biological data. The choice of the best available method is often based on expensive experimental validation of the results. We propose an approach to design validation sets for method comparison and performance assessment that are effective in terms of cost and discrimination power

    Multidimensional treatment foster care for preschoolers: early findings of an implementation in the Netherlands

    Get PDF
    Multidimensional Treatment Foster Care (MTFC) has been shown to be an evidence based alternative to residential rearing and an effective method to improve behavior and attachment of preschool foster children in the US. This preliminary study investigated an application of MTFC for preschoolers (MTFC-P) in the Netherlands focusing on behavioral outcomes in course of the intervention. To examine the following hypothesis: “the time in the MTFC-P intervention predicts a decline in problem behavior, as this is the desired outcome for children assigned to MTFC-P”, we assessed the daily occurrence of 38 problem behaviors via telephone interviews. Repeated measures revealed significant reduced problem behavior in course of the program. MTFC-P promises to be a treatment model suitable for high-risk foster children, that is transferable across centres and countries

    Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Breusing, C., Mitchell, J., Delaney, J., Sylva, S. P., Seewald, J. S., Girguis, P. R., & Beinart, R. A. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. Isme Journal, (2020), doi:10.1038/s41396-020-0707-2.Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host–symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H2: ~25 µM) or hydrogen sulfide (H2S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts.We thank the Schmidt Ocean Institute, the crew of the R/V Falkor and the pilots of the ROV ROPOS for facilitating the sample collections and shipboard experiments, and the Broad Institute Microbial ‘Omics Core for preparing and sequencing the transcriptomic libraries. This material is based in part upon work supported by the National Science Foundation under Grant Numbers NSF OCE-1536653 (to PRG), OCE-1536331 (to RAB and JSS), OCE-1819530 and OCE-1736932 (to RAB)

    Bunyavirus requirement for endosomal K+ reveals new roles of cellular ion channels during infection

    Get PDF
    In order to multiply and cause disease a virus must transport its genome from outside the cell into the cytosol, most commonly achieved through the endocytic network. Endosomes transport virus particles to specific cellular destinations and viruses exploit the changing environment of maturing endocytic vesicles as triggers to mediate genome release. Previously we demonstrated that several bunyaviruses, which comprise the largest family of negative sense RNA viruses, require the activity of cellular potassium (K+) channels to cause productive infection. Specifically, we demonstrated a surprising role for K+ channels during virus endosomal trafficking. In this study, we have used the prototype bunyavirus, Bunyamwera virus (BUNV), as a tool to understand why K+ channels are required for progression of these viruses through the endocytic network. We report three major findings: First, the production of a dual fluorescently labelled bunyavirus to visualize virus trafficking in live cells. Second, we show that BUNV traffics through endosomes containing high [K+] and that these K+ ions influence the infectivity of virions. Third, we show that K+ channel inhibition can alter the distribution of K+ across the endosomal system and arrest virus trafficking in endosomes. These data suggest high endosomal [K+] is a critical cue that is required for virus infection, and is controlled by cellular K+ channels resident within the endosome network. This highlights cellular K+ channels as druggable targets to impede virus entry, infection and disease

    Principles and Fundamentals of Optical Imaging

    Get PDF
    In this chapter I will give a brief general introduction to optical imaging and then discuss in more detail some of the methods specifically used for imaging cortical dynamics today. Absorption and fluorescence microscopy can be used to form direct, diffraction-limited images but standard methods are often only applicable to superficial layers of cortical tissue. Two-photon microscopy takes an intermediate role since the illumination pathway is diffraction-limited but the detection pathway is not. Losses in the illumination path can be compensated using higher laser power. Since the detection pathway does not require image formation, the method can substantially increase the imaging depth. Understanding the role of scattering is important in this case since non-descanned detection can substantially enhance the imaging performance. Finally, I will discuss some of the most widely used imaging methods that all rely on diffuse scattering such as diffuse optical tomography, laser speckle imaging, and intrinsic optical imaging. These purely scattering-based methods offer a much higher imaging depth, although at a substantially reduced spatial resolution

    Test-retest reliability of selected items of Health Behaviour in School-aged Children (HBSC) survey questionnaire in Beijing, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children's health and health behaviour are essential for their development and it is important to obtain abundant and accurate information to understand young people's health and health behaviour. The Health Behaviour in School-aged Children (HBSC) study is among the first large-scale international surveys on adolescent health through self-report questionnaires. So far, more than 40 countries in Europe and North America have been involved in the HBSC study. The purpose of this study is to assess the test-retest reliability of selected items in the Chinese version of the HBSC survey questionnaire in a sample of adolescents in Beijing, China.</p> <p>Methods</p> <p>A sample of 95 male and female students aged 11 or 15 years old participated in a test and retest with a three weeks interval. Student Identity numbers of respondents were utilized to permit matching of test-retest questionnaires. 23 items concerning physical activity, sedentary behaviour, sleep and substance use were evaluated by using the percentage of response shifts and the single measure Intraclass Correlation Coefficients (ICC) with 95% confidence interval (CI) for all respondents and stratified by gender and age. Items on substance use were only evaluated for school children aged 15 years old.</p> <p>Results</p> <p>The percentage of no response shift between test and retest varied from 32% for the item on computer use at weekends to 92% for the three items on smoking. Of all the 23 items evaluated, 6 items (26%) showed a moderate reliability, 12 items (52%) displayed a substantial reliability and 4 items (17%) indicated almost perfect reliability. No gender and age group difference of the test-retest reliability was found except for a few items on sedentary behaviour.</p> <p>Conclusions</p> <p>The overall findings of this study suggest that most selected indicators in the HBSC survey questionnaire have satisfactory test-retest reliability for the students in Beijing. Further test-retest studies in a large and diverse sample, as well as validity studies, should be considered for the future Chinese HBSC study.</p

    Thermal plasma synthesis of Li2S nanoparticles for application in lithium-sulfur batteries

    Get PDF
    Abstract : Inductively-coupled thermal plasma processes were used to produce nanosized Li2S. Prior to the syntheses, the feasibility of forming Li2S was first evaluated using FactSage by considering the phase diagrams of sulfur and different lithium precursors in reducing atmospheres; Li2O, LiOH·H2O, Li2CO3 and Li2SO4·H2O all showed promises in producing Li2S nanoparticles, as confirmed by experiments. Argon and hydrogen mixtures were used as plasma gases, and a carbothermal reduction was implemented for Li2SO4·H2O. In addition, carbon-coated Li2S nanoparticles were synthesized with downstream injection of methane. Carbon was shown to stabilize Li2S upon contact with ambient air. The Li2S nanoparticles were electrochemically tested in half-cells using electrolytes containing LiNO3 or Li2S6 as additives. It was found that adding LiNO3 to the electrolyte was detrimental to the electrochemical performance of Li2S, whereas the combination of Li2S6 and LiNO3 as additives doubled the charge and discharge capacities of the half-cell over 10 cycles

    Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome

    Get PDF
    BACKGROUND AND OBJECTIVES: Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families. DESIGN, SETTING, PARTIIPANTS AND MEASUREMENTS: Three hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes. RESULTS: In 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1, PLCE1, NPHS2, and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome. CONCLUSIONS: Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome

    Surviving Mousepox Infection Requires the Complement System

    Get PDF
    Poxviruses subvert the host immune response by producing immunomodulatory proteins, including a complement regulatory protein. Ectromelia virus provides a mouse model for smallpox where the virus and the host's immune response have co-evolved. Using this model, our study investigated the role of the complement system during a poxvirus infection. By multiple inoculation routes, ectromelia virus caused increased mortality by 7 to 10 days post-infection in C57BL/6 mice that lack C3, the central component of the complement cascade. In C3−/− mice, ectromelia virus disseminated earlier to target organs and generated higher peak titers compared to the congenic controls. Also, increased hepatic inflammation and necrosis correlated with these higher tissue titers and likely contributed to the morbidity in the C3−/− mice. In vitro, the complement system in naïve C57BL/6 mouse sera neutralized ectromelia virus, primarily through the recognition of the virion by natural antibody and activation of the classical and alternative pathways. Sera deficient in classical or alternative pathway components or antibody had reduced ability to neutralize viral particles, which likely contributed to increased viral dissemination and disease severity in vivo. The increased mortality of C4−/− or Factor B−/− mice also indicates that these two pathways of complement activation are required for survival. In summary, the complement system acts in the first few minutes, hours, and days to control this poxviral infection until the adaptive immune response can react, and loss of this system results in lethal infection

    Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    Get PDF
    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models
    corecore