CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails
Authors
AS Pott
AX van der Stel
+35 more
C Dahl
DW Waite
EJA Minter
EL Podowski
G Fuchs
G Roeselers
J McNichol
J Miyazaki
JB Joy
JF Grassle
JG Sanders
KD Kohl
M McFall-Ngai
M McFall-Ngai
M Yamamoto
MD Robinson
MG Grabherr
MI Love
MK Tivey
N Dubilier
NR Boyle
P Bongaerts
R Iglesias-Prieto
R Patro
RA Beinart
RA Beinart
RA Beinart
RC Vrijenhoek
S Kim
S Spring
SB Johnson
U Hentschel
Y Han
Y Han
Y Suzuki
Publication date
1 July 2020
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Breusing, C., Mitchell, J., Delaney, J., Sylva, S. P., Seewald, J. S., Girguis, P. R., & Beinart, R. A. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. Isme Journal, (2020), doi:10.1038/s41396-020-0707-2.Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host–symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H2: ~25 µM) or hydrogen sulfide (H2S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts.We thank the Schmidt Ocean Institute, the crew of the R/V Falkor and the pilots of the ROV ROPOS for facilitating the sample collections and shipboard experiments, and the Broad Institute Microbial ‘Omics Core for preparing and sequencing the transcriptomic libraries. This material is based in part upon work supported by the National Science Foundation under Grant Numbers NSF OCE-1536653 (to PRG), OCE-1536331 (to RAB and JSS), OCE-1819530 and OCE-1736932 (to RAB)
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 01/05/2021
DigitalCommons@URI
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:digitalcommons.uri.edu:gso...
Last time updated on 27/12/2020
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 04/09/2020