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Abstract

Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems
worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A.
kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A.
boucheti host—-symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the
A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit
that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning
between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and
examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H,: ~25uM) or
hydrogen sulfide (H,S: ~120 uM). The campylobacterial symbiont exhibited the lowest rate of H,S oxidation but the highest
rate of H, oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial
symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types,
which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation
among holobionts.

Introduction

Symbiotic microbes are increasingly recognized as impor-
tant drivers of animal development, physiology and spe-
ciation [1, 2]. How symbionts influence the biology of their
host is particularly evident in nutritional symbiotic rela-
tionships, which often broaden the ecological niche of the
animal partner by providing access to novel resources,

Supplementary information The online version of this article (https://
doi.org/10.1038/s41396-020-0707-2) contains supplementary
material, which is available to authorized users.

P4 Corinna Breusing
corinnabreusing @ gmail.com

University of Rhode Island, Graduate School of Oceanography,
Narragansett, RI, USA

Harvard University, Department of Organismic and Evolutionary
Biology, Cambridge, MA, USA

Woods Hole Oceanographic Institution, Department of Marine
Chemistry and Geochemistry, Woods Hole, MA, USA

Published online: 02 July 2020

thereby fostering both ecological and evolutionary diversi-
fication [3-7]. Symbiont-mediated niche expansion, habitat
partitioning and local adaptation have been well described
in insect-microbe and coral-algae symbioses [3-5], but
these processes are less understood in other symbiotic
systems.

Mutualistic symbioses between chemosynthetic bacteria
and invertebrate animals at deep-sea hydrothermal vents
offer intriguing opportunities to study the effects of sym-
biont physiology on host adaptation and niche segregation
in the ocean, given the intricate links between geochemical
environment, symbiont metabolism and host survival. In
these associations, the symbiotic bacteria oxidize reduced
chemicals present in the hydrothermal fluids—e.g., sulfide
(H,S), methane (CH,) and/or hydrogen (H,;)—to gain
energy for the fixation of inorganic carbon into organic
matter, which provides the bulk of nutrition for the animal
host (chemosynthesis; [8]). Chemosynthetic symbioses
have evolved many times: invertebrate hosts come from
divergent taxonomic groups within three invertebrate phyla,
while their symbionts have evolved from several distinct
lineages of two bacterial phyla [8]. Host and symbiont taxa
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Table 1 Summary of the six experiments presented here, including the reductant supplied, geographic coordinates and depths from which the snail
species were collected, as well as the number (N) of control and treatment animals used in each experiment.

Exp. Reductant Vent field Latitude Longitude Depth (m) Species Symbiont Control (N) Treatment (N)
1 H,S ABE -20.7630  -176.1913 2155 A. boucheti € 2 4
A. kojimai y-1 2 4
2 H,S Tu’i Malila -21.9891 -176.5682 1884 A. strummeri -1 3 4
A. kojimai y-1 3 4
3 H, Tu’i Malila -21.9891 -176.5682 1888 A. strummeri  y-1 3 4
A. kojimai y-1 3 5
4 H, ABE -20.7617 -176.1917 2130 A. boucheti € 2 4
A. kojimai y-1 2 5
5 H, Tahi Moana  —20.6838 -176.1834 2214 A. strummeri  y-1 3 3
A. boucheti € 3 3
6" None Tow Cam -20.3166 -176.1361 2703 A. boucheti € 0 3
A. kojimai y-1 0 3

2As we were unable to include an acclimation control, transcriptomic sequencing was not performed for individuals in this experiment.

typically show a strong selectivity towards each other, as
each host species associates with only one to a few distinct
bacterial symbiont lineages [8]. Thus, given that symbiont
phylogenetic diversity can correspond to functional diver-
sity, ecological differences among host taxa may be tied to
the specific traits of their symbiont(s).

Diversity in chemosynthetic traits among symbionts may
be especially important to habitat segregation in these sys-
tems. Chemosynthetic host-symbiont associations (holo-
bionts) are often characterized by heterogeneous
distributions at both local and regional scales, with discrete
patches or zones of animal taxa occurring within a single-
vent field or entire fields being dominated by one or a few
taxa [9-11]. Since the composition and concentration of
fluid compounds for chemosynthetic processes can vary
substantially over temporal and spatial scales [12], the
distribution of many holobionts seems to be linked to taxon-
specific associations with particular habitat characteristics.
Thus, local and regional community composition, and
ultimately the overall biological diversity, may be strongly
influenced by the partitioning of holobionts into distinct
physico-chemical niches. Yet, to date, the mechanistic links
between fluid geochemistry and holobiont community
composition are poorly known.

Snails of the genus Alviniconcha provide a unique
opportunity to understand symbiont-meditated habitat par-
titioning at hydrothermal vents [13, 14]. In the Eastern Lau
Spreading Center (ELSC), Tonga, three species of Alvini-
concha (A. boucheti, A. kojimai, A. strummeri) co-occur at
several vent localities [13, 15], where they establish endo-
symbioses with three different lineages of chemoauto-
trophic ~ Gammaproteobacteria  or  Campylobacteria
(formerly Epsilonproteobacteria; [16]). The bacterial sym-
bionts are assumed to be environmentally acquired given
that phylogenetic studies suggest an absence of
host—symbiont co-evolution [13, 17]. Nevertheless, host
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species and symbiont 16S ribosomal RNA (rRNA) phylo-
types appear to be highly selective towards each other: A.
boucheti typically harbors a campylobacterial symbiont
phylotype (called €), whereas A. kojimai and A. strummeri
associate with two distinct lineages of gammaproteo-
bacterial symbiont phylotypes (called y-1 and y-Lau) [13].
Beinart et al. [13] suggested that the distribution of
different host-symbiont combinations is determined by
local and regional variations in vent geochemistry. While
A. boucheti holobionts are predominantly found at
northern sites characterized by high-fluid concentrations
of H,S and H,, the A. kojimai and A. strummeri holobionts
are more frequently observed at southern sites where
concentrations of these reductants are lower (Supple-
mentary Table S1). The authors hypothesized that differ-
ences in symbiont metabolic potential might drive the
differential abundance of symbiont and host genotypes.
Subsequent genome comparisons between the three
symbiont lineages showed that these symbionts are
broadly similar in terms of gene content related to che-
molithoautotrophy, although differences exist in the spe-
cific encoded enzyme types and metabolic pathways [18].
The large overlap in overall metabolic potential but dis-
crepancy in realized pathways implies that differences in
enzyme kinetics and gene regulation might underlie the
observed habitat partitioning between snail holobionts
[18]. To address this question, we supplied the ELSC
Alviniconcha holobionts with defined concentrations of
dissolved sulfide and hydrogen in high-pressure shipboard
experiments and measured changes in metabolic rates and
gene expression. Exposing the symbionts to the same
environmental conditions allowed us to compare the
holobionts’ transcriptional responses and chemosynthetic
activities, thereby providing insights into potential adap-
tations that are likely important to their realized dis-
tribution across a range of geochemical habitats.
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Materials and methods
Sample collection and experimental setup

Alviniconcha were collected with the ROV ROPOS during
the R/V Falkor expedition FK160409 in 2016 (Table 1).
Snails were recovered in insulated containers and briefly
kept in filtered, 4 °C seawater. Alviniconcha species were
morphologically identified and only those responsive to
touch were used for experiments. All experiments were
conducted under in situ pressure (~20.68 MPa) at a tem-
perature of 15-17 °C in three custom-built, titanium flow-
through aquaria that are part of a high-pressure respirometry
system (HPRS; Supplementary Methods).

Hydrogen and hydrogen-sulfide experiments

A total of six experiments were conducted, two with
hydrogen sulfide, three with hydrogen, and one with no
reductant (Table 1 and Supplementary Fig. S1). Each
experiment compared two Alviniconcha species, with 3-5
individuals of each species being placed separately into two
of the three aquaria, and 2-3 individuals of each species
being placed together into the third aquarium for use as the
“acclimation control”. Each experiment started with a 24 h
acclimation period in the HPRS, where snails were kept in
oxygenated seawater (~250-295 uM O,) without exposure
to reductant or nitrate. The control aquarium was depres-
surized at the conclusion of the acclimation period, and
snails of both species were quickly weighed, dissected, and
sampled for measurement of carbon stable isotopic com-
position and transcriptomic sequencing. Whenever possible,
this third aquarium was re-pressurized, and utilized as an
empty chemistry control to quantify abiotic losses of
reductant and oxygen in the HPRS system during the
experiments. Alternatively, a separate control experiment
was conducted (“estimated control”; Supplementary Meth-
ods; Supplementary Fig. S2). Following the acclimation
period, the aquaria (except for Experiment 6) were exposed
to a 24 h treatment with a chemical reductant (~25 uM H, or
~120 uM H,S) and nitrate (~40 uM), after which the snails
were processed for further analyses as described above. The
H,S concentration was chosen based on previous experi-
ments with Alviniconcha [19] and the H, concentration was
the maximum concentration that could be achieved utilizing
a Parker Balston H2-90 H, generator.

Oxidation, respiration, and carbon incorporation
rates

Hydrogen, sulfide, and oxygen concentrations were
measured in the input and effluent from each aquarium as
described in the Supplementary Methods. Mass-specific

H, and H,S oxidation and O, respiration rates were cal-
culated as in ref. [19] by comparing the steady-state
concentrations of H,, H,S, and O, between effluents from
treatment and empty control aquaria (Supplementary
Tables S2 and S3; and Supplementary Figs. S3 and S4). In
the experiments without empty control aquarium, the
control concentrations were estimated by correcting the
input water concentration by the mean proportion of
abiotic reductant loss.

After the acclimation period, input seawater was amen-
ded with '3C labeled sodium bicarbonate (Na'*CO5; 99.9%
atom percent; Cambridge Isotopes Laboratories, Inc.) to
achieve a final '*C atom percent (A%) of 2-4%. Sample
processing and calculation of '3C incorporation rates
(BCmc) was performed as in ref. [19], except that instead of
normalizing to the A% of experimental foot tissue, the
average gill A% for acclimation animals of the same species
was used, which provides a better approximation of the
initial natural stable isotopic composition.

Sequencing and bioinformatic analyses

At the end of the acclimation and experimental periods, gill
tissue pieces were excised from each animal for host
mitochondrial COI genotyping and transcriptomic sequen-
cing as detailed in the Supplementary Methods. COI gene
sequences have been deposited in GenBank under accession
numbers MN551348-MN551413, while raw RNAseq reads
have been uploaded to the Sequence Read Archive under
BioProject number PRINAS526236. After initial quality
checks, raw reads were trimmed, filtered for rRNA, host and
other contaminating sequences, and mapped against the
Alviniconcha symbiont genomes [18] for symbiont read
quantification (Supplementary Methods). Since read sup-
port for minority symbionts was low (usually <1,000,000
reads), we focused our analyses on the most abundant
endosymbiont in each host species to ensure accurate
transcript estimation and statistical robustness (Table 1 and
Supplementary Table S4). For each sample, transcripts of
the dominant symbiont were mapped against the RASTtk
annotated gene set of the symbiont’s draft genome with
BBMAP (https://sourceforge.net/projects/bbmap/) and then
quantified with SALMON [20]. General transcription pro-
files for each sample were obtained by calculating Trimmed
Mean of M normalized Transcripts Per Million (TPM)
values [21, 22] for individual transcripts as well as broader
gene categories that we defined based on the RASTtk
annotations and literature searches. Differential gene
expression between control and treatment samples for each
species and experimental setup was identified with DESeq?2
in R [23, 24], accounting for batch effects and pseudo-
replication and adjusting p-values for type I error (Supple-
mentary Methods).
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Fig. 1 Oxidation and respiration rates for Alviniconcha species.
Mean mass-specific oxidation rates for (a) H, and (b) H,S, as well as
the mass-specific O, respiration rates for Alviniconcha species while
oxidizing (c¢) H, or (d) H,S. All mass-specific rates are expressed as
per gram of wet gill tissue and their standard error are given.

Results
Oxidation and respiration rates

All three Alviniconcha holobionts demonstrated the ability
to oxidize H,S and H, (Fig. la, b and Supplementary
Table S2). The rates of H,S and H, oxidation showed
opposing patterns for two of the species, with A. boucheti
having the highest mass-specific rate of H, oxidation, but
lowest rate of H,S oxidation, and vice versa for A. strum-
meri (Fig. 1a, b). A. kojimai had H, and H,S oxidation rates
in between the two other species (Fig. la, b). Oxygen
respiration rates followed the same pattern (Fig. 1c, d and
Supplementary Table S3). These findings were unrelated to
animal size as Spearman Rank correlations of gill weight
with H,S/H, oxidation rate and O, respiration rate were
insignificant.

Inorganic carbon incorporation rates

All individuals from the experiments with reductant showed
enrichment in '’C to levels above the natural abundance
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Fig. 2 Carbon incorporation rates for Alviniconcha. Mass-specific
carbon incorporation rates (13Cinc) for Alviniconcha individuals when
oxidizing (a) H, or (b) H,S. Horizontal bars show the mean for each
experiment and error bars show the 95% confidence intervals. All
mass-specific rates are expressed as per gram of wet gill tissue.

threshold (Supplementary Fig. S5; and Supplementary
Tables S5 and S6). However, *Cj,. did not directly follow
H, or H,S oxidation rates (Fig. 2). BC,e for A. boucheti
was generally low, but similar among the H, and H,S
treatments (Fig. 2). A. kojimai demonstrated higher 13Cinc
than A. strummeri under both conditions, though many A.
kojimai and A. strummeri individuals exhibited comparable
BCi,c when oxidizing H, or H,S (Fig. 2). For reasons that
are unclear, individuals of both A. kojimai and A. strummeri
exhibited markedly low rates of H, oxidation, O, respira-
tion, and carbon incorporation during Experiment 3. The
observed patterns were not linked to animal size with the
exception of Experiment 4 where some larger A. kojimai
individuals exhibited unusually high-carbon incorporation
rates (S=19.616, p-value=0.02652; Supplementary
Table S6).

In Experiment 6, where A. boucheti and A. kojimai were
exposed to '3C label in the absence of any exogenous
reductant, A% values were above the natural abundance
threshold for A. kojimai across experiments, indicative of
inorganic carbon fixation (Supplementary Fig. S5 and
Supplementary Table S6). Owing to the lack of an accli-
mation control, we are unable to calculate precise mass-
specific '*C incorporation rates in this experiment. How-
ever, using the mean acclimation A% for each species as an
approximation of our initial carbon isotope ratio, we cal-
culate a mean estimated rate of 2.22 umoles g~ h™! for A.
kojimai and no incorporation for A. boucheti.

Symbiont transcription profiles

High-throughput RNA sequencing on the Illumina™ Nova-
and NextSeq instruments resulted in an average of
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Fig. 3 Transcriptome profiles for Alviniconcha species. Tran-
scriptome profiles for the (a) A. kojimai, (b) A. strummeri and (c) A.
boucheti symbiont. Hypothetical genes are excluded from this plot for

43,960,734 paired-end reads per sample, 5,382,133
(12.24%) of which remained for analysis. The dominant
symbiont phylotype represented at least 75% of all sym-
biont reads in each snail individual: y-1 in A. kojimai and A.
strummeri, and € in A. boucheti (Table 1 and Supplementary
Table S4). The remaining symbiont reads were comprised
of either y-1 (in A. boucheti) or € (in A. kojimai and A.
strummeri), while the y-Lau symbiont was lowly abundant
(<5%) in all samples (Supplementary Table S4).
Independent of experimental treatment, the symbionts of
all Alviniconcha species exhibited the highest expression
levels for hypothetical genes, followed by genes involved in
protein metabolism and respiration (Fig. 3 and Supple-
mentary Fig. S6). A moderate to high expression was also
observed for RNA metabolism genes in the y-1 symbiont of
A. kojimai and A. strummeri, and for sulfur and nitrogen
metabolism genes in the € symbiont of A. boucheti. Key
genes involved in sulfur oxidation and nitrogen metabolism
constituted 2.02-3.32% and 3.80—6.01% of all transcripts in
the € symbiont, but only 1.32-2.46% and 0.45-1.71% in the
v-1 symbiont, respectively (Supplementary Table S7).
Transcripts for hydrogen oxidation genes were lowly
abundant in all symbiont types (0.00-0.04%; Supplemen-
tary Table S7). Transcripts for carbon fixation genes

Control H,S H,

better visibility of gene expression status in other categories (see also
Supplementary Fig. S6). Plotted values are TMM normalized TPMs.

comprised 1.44-1.68% in the € symbiont, which uses the
reverse tricarboxylic acid (fTCA) cycle for carbon assim-
ilation [18], and 0.12-0.33% in the y-1 symbiont, which
uses the Calvin-Benson-Bassham (CBB) cycle [18] (Sup-
plementary Table S7).

Symbiont differential gene expression: sulfide
treatment

In the A. kojimai—y-1 holobiont, 1776 genes were differ-
entially expressed (Supplementary Tables S8 and S9).
One-thousand fifty-two of these genes were hypothetical
proteins, most of which were downregulated (Supple-
mentary Fig. S7a). Differentially expressed (DE) genes in
other categories, especially protein (118), cell wall (60),
DNA (57), amino acid (56), RNA (53), and cofactor (47)
metabolism, showed opposing patterns (Fig. 4a). Many of
these genes were functionally related to biosynthetic
processes, such as ribosome assembly, transcription and
biogenesis of extra- and intracellular compounds (Fig. Sa
and Supplementary Table S9). Likewise, DE genes
involved in carbon (42) and nitrogen (29) metabolism
(e.g., CO, uptake, gluconeogenesis, denitrification and
nitrate/nitrite ammonification) showed an increase in
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Fig. 4 Differential gene expression in the sulfide treatment. Dif-
ferential gene expression in the sulfide treated symbionts of (a) A.
kojimai, (b) A. strummeri, and (c) A. boucheti based on an adjusted p-
value of 0.05. Hypothetical genes are excluded from this plot for better

Number of genes

Downregulated [l Upregulated [l

visibility of gene expression changes in other categories (see also
Supplementary Fig. S7). Comparisons are relative to the acclimation
control samples.
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Downregulated Il

Fig. 5 Differential gene expression for selected functional cate-
gories in the sulfide treatment. Differential gene expression for
metabolic subcategories in the sulfide treated symbionts of (a) A.

expression (Figs. 4a and 5a). Seventeen genes related to
sulfur metabolism were upregulated, including soxZ,
soxY, genes of the sulfite reduction-associated complex
DsrMKIOP, rhodanese-related sulfurtransferases, sulfide:
quinone oxidoreductase (SQR) type I, adenylylsulfate
reductase, sulfate adenylyltransferase, and thioredoxin-
disulfide reductase (Fig. Sa and Supplementary Table S9).
Expression of hydrogen metabolism genes did not change,
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Number of genes
Upregulated [l

kojimai, (b) A. strummeri, and (c) A. boucheti based on an adjusted p-
value of 0.05. Comparisons are relative to the acclimation control
samples.

except for a quad-[4Fe-4S] ferredoxin of the HycB/HydN/
HyfA family, which was downregulated.

Gene expression patterns in the A. strummeri —y-1
holobiont mirrored those in the A. kojimai —y-1 holobiont,
although only 422 genes were differentially expressed
(Supplementary Tables S8 and S9). Most DE genes enco-
ded hypothetical proteins (103), which were largely
downregulated (Supplementary Fig. S7b). DE genes related
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Fig. 6 Differential gene expression in the hydrogen treatment.
Differential gene expression in the hydrogen treated symbionts of (a)
A. kojimai, (b) A. strummeri, and (c) A. boucheti based on an adjusted
p-value of 0.05. Hypothetical genes are excluded from this plot for
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better visibility of gene expression changes in other categories (see
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Fig. 7 Differential gene expression for selected functional cate-
gories in the hydrogen treatment. Differential gene expression for
metabolic subcategories in the hydrogen treated symbionts of (a) A.
kojimai and (b) A. strummeri based on an adjusted p-value of 0.05. No
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significant changes in expression were seen in the A. boucheti sym-
biont for these categories. Comparisons are relative to the acclimation
control samples.
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to biosynthetic pathways, especially protein (83), amino
acid (25), cofactor (20), and RNA (19) metabolism, as well
as DE genes involved in carbon (22) and nitrogen (13)
metabolism were predominantly upregulated (Fig. 4b and
Supplementary Table S9). These genes included various
enzymes related to inorganic carbon assimilation, deni-
trification, and nitrate/nitrite ammonification (Fig. 5b and
Supplementary Table S9). Fourteen sulfur metabolism
genes showed an increase in expression, including soxA,
SQR type VI, sulfate adenylyltransferase, genes of the
sulfite reduction-associated complex DstMKJOP and ade-
nylylsulfate reductase (Fig. 5b and Supplementary
Table S9). Hydrogen metabolism genes showed no change
in expression.

In the A. boucheti—¢ holobiont, 66 genes were differen-
tially expressed (Supplementary Tables S8 and S9). These
DE genes encoded mostly hypothetical proteins (28), which
were upregulated (Supplementary Fig. S7c). Likewise, DE
genes associated with protein metabolism, in particular heat
shock proteins and chaperones, were upregulated, whereas
DE genes involved in cellular respiration were down-
regulated (Figs. 4c and 5c; and Supplementary Table S9).
Three genes related to sulfur oxidation (soxD, soxY, sulfur
oxidation molybdopterin C protein), one gene related to
hydrogen oxidation (quinone-reactive Ni/Fe-hydrogenase
large chain), and three genes of the rTCA cycle (2-oxo-
glutarate/2-oxoacid ferredoxin oxidoreductase subunits f, vy,
0) were downregulated (Fig. 5c and Supplementary
Table S9). No changes in expression were seen for nitrogen
metabolism genes.

Symbiont differential gene expression: hydrogen
treatment

In the hydrogen treated A. kojimai—y-1 holobiont 435 genes
were differentially expressed (Supplementary Tables S8 and
S9). Again, the majority of these genes comprised hypothe-
tical proteins (359), although these were predominantly
upregulated (Supplementary Fig. S8a). DE genes involved in
respiration (10) and cell wall functions (9) showed mostly a
decrease in expression, while genes involved in protein
metabolism (9), especially biosynthesis of the ribosomal
complex, showed an increase in expression (Figs. 6a and 7a;
and Supplementary Table S9). Three genes related to carbon
metabolism and two genes related to nitrogen metabolism
were differentially expressed. Of these, ribulose bisphosphate
carboxylase and the heme d1 biosynthesis proteins NirD/NirL
were upregulated (Fig. 7a and Supplementary Table S9). In
the sulfur oxidation pathway, the gene encoding the sulfite
reduction-associated complex DsrMKJOP iron-sulfur protein
DsrO was downregulated, while anaerobic dimethyl sulfoxide
reductase chain A was upregulated. Expression of hydrogen
oxidation genes did not change.
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In the A. strummeri—y-1 holobiont, 1113 genes were
differentially expressed (Supplementary Tables S8 and S9).
Most of these genes encoded hypothetical proteins, which
were upregulated (615; Supplementary Fig. S8b). DE genes
in other categories, especially protein metabolism (59), cell
wall and capsule (28), and DNA metabolism (23), showed
mostly a decrease in expression (Fig. 6b). Similarly, DE
genes involved in carbon, nitrogen and hydrogen metabo-
lism (e.g., HyaF, HyaB) and the reverse dissimilatory sulfite
reductase (DSR) pathway were downregulated, whereas
genes of the SOX pathway were upregulated (Fig. 7b and
Supplementary Table S9).

In the hydrogen treated A. boucheti—e holobiont, only
nine genes were differentially expressed (Supplementary
Tables S8 and S9), especially hypothetical proteins (6),
which were upregulated (Supplementary Fig. S8c). Addi-
tionally, one gene involved in cofactor biosynthesis and two
genes involved in cell wall metabolism showed an increase
in expression, but no significant differences were found in
any other categories (Fig. 6¢).

Discussion

Animal-microbe symbioses at hydrothermal vents are
opportune systems to study the links between environ-
mental conditions, symbiont metabolism and host biogeo-
graphy. Among sympatric Alviniconcha vent snail species
of the ELSC, the traits of their chemosynthetic bacterial
symbionts are hypothesized to influence their distribution
and niche segregation [13, 14], but the underlying physio-
logical and genetic mechanisms have not yet been examined
in detail. Here, we performed high-pressure shipboard
experiments to assess differences in symbiont metabolic
rates and transcriptional regulation that might play a role in
symbiont-mediated host niche partitioning of the co-
occurring species A. kojimai, A. strummeri, and A. boucheti.

Our results indicated that the campylobacterial € sym-
biont and the gammaproteobacterial y-1 symbiont show
contrasting metabolic and transcriptional responses to the
offered concentrations of hydrogen and sulfide. Although
any net metabolic measurements of the holobiont represent
the activities of all symbiotic bacteria, the € and y-1 phy-
lotypes comprised about 75-80% of the symbiont meta-
transcriptome in A. boucheti and A. kojimailA. strummeri,
respectively (Supplementary Table S4), and, thus, likely
account for the physiological responses observed here. The
presence of a single dominant phylotype in each snail host
is consistent with a previous quantitative assessment of
Alviniconcha symbiont communities [13], while intracel-
lular minority symbiont populations have not yet been
confirmed microscopically. Therefore, it is possible that the
minority phylotypes (~20% y-1 in A. boucheti and ~20% ¢
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in A. kojimailA. strummeri) detected here are actually free-
living symbionts attached to gill surface or other con-
taminants. However, if these represent true minority sym-
biont populations, they have the potential to contribute to
the physiological plasticity of these holobionts and might
increase their adaptability to environmental fluctuations.
Interestingly, the y-Lau symbiont comprised only a small
percentage of the symbiont community in our experimental
Alviniconcha, despite having been previously seen to be
abundant in A. strummeri from the Tu’i Malila vent field
[13]. These findings may reflect intra-field patchiness in the
frequency of associations between A. strummeri and the two
gammaproteobacterial symbiont phylotypes.

Although we were unable to obtain geochemical mea-
surements directly from the snail patches sampled here,
reductant concentrations in end-member hydrothermal
fluids and Alviniconcha beds were measured on previous
expeditions (Supplementary Table S1). End-member con-
centrations do not represent the habitat conditions that these
snails experience, but give a relative approximation of the
chemical gradient that exists between vent sites. The A.
boucheti holobiont dominates at hydrothermal vents with
high sulfide and hydrogen concentrations, and the experi-
mental concentrations used here were likely in the normal to
lower range of what they typically experience [13, 25]
(Supplementary Table S1). However, for the A. kojimai and
A. strummeri holobionts, the experimental conditions likely
represented values that are on the high end of what they
normally encounter [13, 25] (Supplementary Table S1).
Adaptations to these conditions may explain the distinct
metabolic and transcriptional patterns we observed.

A. boucheti’s € symbiont oxidized H,S at the lowest and
H, at the highest rates, but incorporated less carbon than the
v-1 symbiont under both experimental conditions. Interest-
ingly, carbon incorporation rates were comparable in the A.
boucheti symbiont when oxidizing either reductant, even
though rates of sulfide oxidation were almost twice the rates
of hydrogen oxidation. This greater efficiency of hydrogen
oxidation is consistent with both growth experiments and a
recent theoretical model of chemosynthetic efficiency in
Sulfurimonas denitrificans, a close relative of the € sym-
biont, which suggests that productivity via aerobic hydro-
gen oxidation is at least three times higher than via aerobic
sulfur oxidation [26, 27].

The A. boucheti symbiont showed no significant changes
in expression for genes related to sulfur and hydrogen
oxidation, carbon fixation, and nitrogen metabolism under
the experimental hydrogen treatment, and started to down-
regulate a few of these genes under the experimental sulfide
treatment. It is possible that this € symbiont constitutively
expresses some key genes involved in chemoautotrophy,
which supports recent views of transcriptional regulation in
chemosynthetic Sulfurimonas [28]. For example, a core

enzyme involved in sulfide oxidation is sulfide:quinone
reductase, which is present as SQR type IV and VI in the
genomes and the studied transcriptomes of the A. boucheti
symbiont. In non-symbiotic Sulfurimonas these SQR types
have optimal work H,S concentrations of >2mM and
>4 mM, respectively [29]. SQR type IV is assumed to be
constitutively expressed, while SQR type VI is only acti-
vated at high sulfide concentrations. Although it is unknown
how these SQRs are regulated in the A. boucheti symbiont,
it is possible that they function in a similar way as those of
free-living sulfide-oxidizing Sulfurimonas. This could
explain why we did not see significant expression changes
in these SQR types and why the A. boucheti symbiont
exhibited relatively low rates of H,S oxidation. Notably,
this symbiont increased expression of heat shock proteins
and chaperones, implying that it was mitigating some
stressor at the experimental sulfide conditions. This may
indicate that the provided amount of sulfide was low rela-
tive to in situ concentrations, or that the € symbiont prefers
access to both hydrogen and sulfide at the same time. For
example, free-living Campylobacteria have transcriptional
patterns that suggest that they utilize many reductants
simultaneously instead of preferentially [28], while growth
rates are highest when both hydrogen and sulfur are
accessible [26]. Consequently, the A. boucheti—e holobiont
may be adapted to the presence of high concentrations of
both sulfide and hydrogen in its habitat and may have
arrested its metabolism under the experimental conditions
used here. These assumptions are supported by comparisons
with in situ gene expression patterns of the € symbiont [14]:
natural transcript abundances for sulfur, nitrogen and car-
bon metabolism genes showed closer resemblance to tran-
script abundances in the experimental control group than to
those in the treatment groups. The € symbiont assimilates
inorganic carbon via the rTCA cycle, which is more energy
efficient than the CBB cycle used by the y-1 symbiont [30].
Metabolic arrest could explain why carbon was incorpo-
rated less effectively by the € symbiont despite the higher
efficiency of its carbon fixation metabolism.

We observed no change in expression for hydrogen
oxidation genes in the A. boucheti symbiont under the
experimental H, conditions. These findings differ from a
recent study by Miyazaki et al. [31], which showed that the
campylobacterial symbiont of A. marisindica strictly reg-
ulates the expression of hydrogenases depending on the
environmental hydrogen concentrations. Compared to
Miyazaki et al. [31], who provided 100 uM H, in their
experiments, we only provided 25 uM H,. Thus, it is pos-
sible that the experimental hydrogen concentration supplied
in our study was insufficient to induce upregulation of
hydrogenases in the A. boucheti symbiont. An alternative,
though not mutually exclusive, explanation could be that
there are taxon-specific differences in hydrogenase
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regulation, since the A. marisindica symbiont belongs to the
genus Sulfurovum [31], while the A. boucheti symbiont is
related to the genus Sulfurimonas [13]. Free-living Sulfur-
ovum are known to elevate hydrogenase activity under high
H, concentrations [32], while varied responses have been
observed in Sulfurimonas [29]. For example, of the two
free-living Sulfurimonas species occurring at hydrothermal
vents, only one was shown to consume hydrogen under
experimental conditions [29].

Very different reactions were observed in the y-1 sym-
biont of A. kojimai and A. strummeri, which showed higher
rates of sulfide oxidation and carbon fixation, but lower
rates of hydrogen oxidation than the & symbiont. When
exposed to dissolved sulfide, the y-1 symbiont upregulated
several genes involved in sulfur oxidation, nitrate respira-
tion and assimilation, carbon fixation, and biosynthetic
processes and showed transcript abundances that were
similar to in situ conditions [14]. In contrast to the A.
boucheti symbiont, this endosymbiont possesses SQR types
T and VI. While little is known about the enzyme kinetics of
SQR type I, our data indicate that it is active at lower H,S
levels, thereby allowing efficient coupling of sulfide oxi-
dation and carbon incorporation under the experimental
conditions. SQR type I was significantly upregulated in the
v-1 symbiont of A. kojimai, which showed the highest rates
of carbon fixation in the sulfide treatment. Interestingly, in
A. strummeri the y-1 symbiont increased expression of SQR
type VI, which is a high-sulfide adapted enzyme [29]. The
contrasting response of this symbiont when associated with
different host species may suggest adaptive differences to
their specific habitats, which might be related to potential
strain-level differences in the populations of y-1. Among the
three Alviniconcha species, A. strummeri is primarily found
at sites with the lowest concentrations of sulfide [13]. The
upregulation of a high-sulfide adapted enzyme suggests that
the experimental sulfide concentrations were at the upper
end of what A. strummeri naturally experiences and that
their SQR type VI may have evolved to function at this
substrate level threshold.

When exposed to dissolved hydrogen, the y-1 symbiont
of A. kojimai and A. strummeri oxidized hydrogen at a
lower rate than sulfide, while carbon incorporation rates
were similar between treatments. This may indicate that
coupling of H, oxidation and biomass production was more
efficient in this symbiont than in the e symbiont at the
provided hydrogen concentrations, possibly due to differ-
ences in energetic efficiencies between different carbon
fixation pathways [30, 33]. However, there is also plausible
evidence that chemosynthetic energy might have been
acquired from an additional, endogenous source. For
example, although all experimental snails were acclimated
without reductant for 24 h prior to experimentation, some of
the “net” carbon incorporation observed during the
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hydrogen experiments could have been fueled by sulfur
stores. For example, some A. kojimai —y-1 holobionts
incorporated inorganic carbon during treatments that did not
supply any exogenous reductant. Based on the sulfur oxi-
dation pathways used by the y-1 symbiont [13, 14] and
visual observation of the gill, the y-1 symbiont deposits
sulfur granules that could be accessed when exogenous
reductants are insufficient. However, we did not observe
upregulation of the DSR pathway, which would be expected
if sulfur stores were mobilized during sulfide limitation
[34, 35]. Interestingly, the y-1 symbiont in association with
A. strummeri upregulated genes of the SOX pathway,
although no sulfidic reductants were added in the hydrogen
treatment. Some marine thiotrophic Gammaproteobacteria
possess an optimized SOX multi-enzyme system that has
evolved to utilize trace amounts of thiosulfate resulting
from the degradation of organic sulfur compounds [36]. If
the A. strummeri symbiont has a similarly adapted system, it
might have made use of host-derived sulfur-containing
amino acids to generate thiosulfate as electron donor for
chemosynthetic primary production.

In all experiments, the snails and their symbionts were not
limited by oxygen concentration, since oxygen was present in
the effluent. Still, the addition of nitrate during experimental
treatment with both H,S and H, stimulated the upregulation
of genes for nitrate respiration by the y-1 symbiont, likely to
avoid competition for oxygen with its hosts [37, 38].
Although no such response was observed in the € symbiont,
genes for denitrification were present at moderate levels in its
transcriptome, implying that it may use nitrate as alternative
terminal electron acceptor for chemosynthesis.

Conclusions

Our data reveal that the symbionts of A. kojimai, A.
strummeri, and A. boucheti differ in their metabolic and
transcriptomic responses to the supply of sulfide and
hydrogen under controlled conditions. At the provided
reductant concentrations, the y-1 symbiont (associated with
A. kojimai and A. strummeri) outperformed the € symbiont
(associated with A. boucheti) in terms of chemosynthetic
activity. The & symbiont fixed inorganic carbon when
exposed to either hydrogen or sulfide, though at higher
efficiency in the presence of hydrogen. Conversely, evi-
dence for hydrogen-driven carbon fixation by the vy-1
symbiont is weak. Instead, the low rates of hydrogen oxi-
dation, upregulation of sulfur oxidation genes in the H,
treatment, and demonstrated ability to fix inorganic carbon
in the absence of an exogenous reductant, suggest that the y-
1 symbiont may be utilizing an endogenous energy source
instead of or in addition to hydrogen when environmental
sulfide is unavailable. These findings suggest that in
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hydrogen- and sulfide-deprived environments, the y-1
symbiont may be more advantageous than the £ symbiont
because of physiological adaptations to low reductant con-
centrations, which likely influence the observed
host—symbiont niche differentiation along the ELSC. In the
future, experiments with more replication and sampling
times, longer acclimation and experimental periods, a
greater range of hydrogen and sulfide concentrations, and
the simultaneous application of both reductants, will be
helpful to further inform our understanding of symbiont
metabolic responses in the complete scope of conditions
available to these holobionts. The work presented here
provides initial insights into the physiological adaptations
among Alviniconcha holobionts to local habitat conditions,
and reinforces the hypothesis that diversity in chemoauto-
trophic traits may be an important driver of holobiont
ecology at hydrothermal vents.
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