48 research outputs found
Evolution of Mycobacterium ulcerans and other mycolactone-producing mycobacteria from a common Mycobacterium marinum progenitor
It had been assumed that production of the cytotoxic polyketide mycolactone was strictly associated with Mycobacterium ulcerans, the causative agent of Buruli ulcer. However, a recent study has uncovered a broader distribution of mycolactone-producing mycobacteria (MPM) that includes mycobacteria cultured from diseased fish and frogs in the United States and from diseased fish in the Red and Mediterranean Seas. All of these mycobacteria contain versions of the M. ulcerans pMUM plasmid, produce mycolactones, and show a high degree of genetic relatedness to both M. ulcerans and Mycobacterium marinum. Here, we show by multiple genetic methods, including multilocus sequence analysis and DNA-DNA hybridization, that all MPM have evolved from a common M. marinum progenitor to form a genetically cohesive group among a more diverse assemblage of M. marinum strains. Like M. ulcerans, the fish and frog MPM show multiple copies of the insertion sequence IS2404. Comparisons of pMUM and chromosomal gene sequences demonstrate that plasmid acquisition and the subsequent ability to produce mycolactone were probably the key drivers of speciation. Ongoing evolution among MPM has since produced at least two genetically distinct ecotypes that can be broadly divided into those typically causing disease in ectotherms (but also having a high zoonotic potential) and those causing disease in endotherms, such as humans
First Detection of Mycobacterium ulcerans DNA in Environmental Samples from South America
The occurrences of many environmentally-persistent and zoonotic infections are driven by ecosystem changes, which in turn are underpinned by land-use modifications that alter the governance of pathogen, biodiversity and human interactions. Our current understanding of these ecological changes on disease emergence however remains limited. Buruli ulcer is an emerging human skin disease caused by the mycobacterium, Mycobacterium ulcerans, for which the exact route of infection remains unclear. It can have a devastating impact on its human host, causing extensive necrosis of the skin and underlying tissue, often leading to permanent disability. The mycobacterium is associated with tropical aquatic environments and incidences of the disease are significantly higher on floodplains and where there is an increase of human aquatic activities. Although the disease has been previously diagnosed in South America, until now the presence of M. ulcerans DNA in the wild has only been identified in Australia where there have been significant outbreaks and in western and central regions of Africa where the disease is persistent. Here for the first time, we have identified the presence of the aetiological agent's DNA in environmental samples from South America. The DNA was positively identified using Real-time Polymerase Chain Reaction (PCR) on 163 environmental samples, taken from 23 freshwater bodies in French Guiana (Southern America), using primers for both IS2404 and for the ketoreductase-B domain of the M. ulcerans mycolactone polyketide synthase genes (KR). Five samples out of 163 were positive for both primers from three different water bodies. A further nine sites had low levels of IS2404 close to a standard CT of 35 and could potentially harbour M. ulcerans. The majority of our positive samples (8/14) came from filtered water. These results also reveal the Sinnamary River as a potential source of infection to humans. © 2014 Morris et al
Characterization of a Si(Li) Compton polarimeter for the hard x-ray regime, using synchrotron radiation.
BACKGROUND: Buruli ulcer (BU), caused by Mycobacterium ulcerans (M. ulcerans), is a necrotizing skin disease found in more than 30 countries worldwide. BU incidence is highest in West Africa; however, cases have substantially increased in coastal regions of southern Australia over the past 30 years. Although the mode of transmission remains uncertain, the spatial pattern of BU emergence in recent years seems to suggest that there is an environmental niche for M. ulcerans and BU prevalence. METHODOLOGY/PRINCIPAL FINDINGS: Network analysis was applied to BU cases in Victoria, Australia, from 1981-2008. Results revealed a non-random spatio-temporal pattern at the regional scale as well as a stable and efficient BU disease network, indicating that deterministic factors influence the occurrence of this disease. Monthly BU incidence reported by locality was analyzed with landscape and climate data using a multilevel Poisson regression approach. The results suggest the highest BU risk areas occur at low elevations with forested land cover, similar to previous studies of BU risk in West Africa. Additionally, climate conditions as far as 1.5 years in advance appear to impact disease incidence. Warmer and wetter conditions 18-19 months prior to case emergence, followed by a dry period approximately 5 months prior to case emergence seem to favor the occurrence of BU. CONCLUSIONS/SIGNIFICANCE: The BU network structure in Victoria, Australia, suggests external environmental factors favor M. ulcerans transmission and, therefore, BU incidence. A unique combination of environmental conditions, including land cover type, temperature and a wet-dry sequence, may produce habitat characteristics that support M. ulcerans transmission and BU prevalence. These findings imply that future BU research efforts on transmission mechanisms should focus on potential vectors/reservoirs found in those environmental niches. Further, this study is the first to quantitatively estimate environmental lag times associated with BU outbreaks, providing insights for future transmission investigations
Sero-Epidemiology as a Tool to Screen Populations for Exposure to Mycobacterium ulcerans
Sero-epidemiological analyses revealed that a higher proportion of sera from individuals living in the Buruli ulcer (BU) endemic Densu River Valley of Ghana contain Mycobacterium ulcerans 18 kDa small heat shock protein (shsp)-specific IgG than sera from inhabitants of the Volta Region, which was regarded so far as BU non-endemic. However, follow-up studies in the Volta Region showed that the individual with the highest anti-18 kDa shsp-specific serum IgG titer of all participants from the Volta Region had a BU lesion. Identification of more BU patients in the Volta Region by subsequent active case search demonstrated that sero-epidemiology can help identify low endemicity areas. Endemic and non-endemic communities along the Densu River Valley differed neither in sero-prevalence nor in positivity of environmental samples in PCR targeting M. ulcerans genomic and plasmid DNA sequences. A lower risk of developing M. ulcerans disease in the non-endemic communities may either be related to host factors or a lower virulence of local M. ulcerans strains
Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor
Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins
Ecology and Transmission of Buruli Ulcer Disease: A Systematic Review
Buruli ulcer is a neglected emerging disease that has recently been reported in some countries as the second most frequent mycobacterial disease in humans after tuberculosis. Cases have been reported from at least 32 countries in Africa (mainly west), Australia, Southeast Asia, China, Central and South America, and the Western Pacific. Large lesions often result in scarring, contractual deformities, amputations, and disabilities, and in Africa, most cases of the disease occur in children between the ages of 4–15 years. This environmental mycobacterium, Mycobacterium ulcerans, is found in communities associated with rivers, swamps, wetlands, and human-linked changes in the aquatic environment, particularly those created as a result of environmental disturbance such as deforestation, dam construction, and agriculture. Buruli ulcer disease is often referred to as the “mysterious disease” because the mode of transmission remains unclear, although several hypotheses have been proposed. The above review reveals that various routes of transmission may occur, varying amongst epidemiological setting and geographic region, and that there may be some role for living agents as reservoirs and as vectors of M. ulcerans, in particular aquatic insects, adult mosquitoes or other biting arthropods. We discuss traditional and non-traditional methods for indicting the roles of living agents as biologically significant reservoirs and/or vectors of pathogens, and suggest an intellectual framework for establishing criteria for transmission. The application of these criteria to the transmission of M. ulcerans presents a significant challenge
A thin-slice of institutionalised police brutality: a tradition of excessive force in the Chicago Police Department
In the Chicago Police Department, a sustained tradition of tolerating violent conduct has contributed to the fostering of a police culture in which the use of force is celebrated. Evidence suggests that there has been a historical reluctance to take action to discipline officers accused of misconduct – many of whom are highly decorated veterans of the Chicago Police Department. It is the contention of this article that the long-standing endorsement of excessive force in Chicago policing has compromised officers’ ability to thin-slice, a psychological process in which people are able to draw on their experiences and socio-cultural context to make quick decisions under pressure. Instead, officers are instinctively drawn to engage in misconduct as a means to an end, with the confidence that their actions will not attract the sanction of their superiors
The Incubation Period of Buruli Ulcer (Mycobacterium ulcerans Infection)
INTRODUCTION: Buruli Ulcer (BU) is caused by the environmental microbe Mycobacterium ulcerans. Despite unclear transmission, contact with a BU endemic region is the key known risk factor. In Victoria, Australia, where endemic areas have been carefully mapped, we aimed to estimate the Incubation Period (IP) of BU by interviewing patients who reported defined periods of contact with an endemic area prior to BU diagnosis. METHOD: A retrospective review was undertaken of 408 notifications of BU in Victoria from 2002 to 2012. Telephone interviews using a structured questionnaire and review of notification records were performed. Patients with a single visit exposure to a defined endemic area were included and the period from exposure to disease onset determined (IP). RESULTS: We identified 111 of 408 notified patients (27%) who had a residential address outside a known endemic area, of whom 23 (6%) reported a single visit exposure within the previous 24 months. The median age of included patients was 30 years (range: 6 to 73) and 65% were male. 61% had visited the Bellarine Peninsula, currently the most active endemic area. The median time from symptom onset to diagnosis was 71 days (range: 34-204 days). The midpoint of the reported IP range was utilized to calculate a point estimate of the IP for each case. Subsequently, the mean IP for the cohort was calculated at 135 days (IQR: 109-160; CI 95%: 113.9-156), corresponding to 4.5 months or 19.2 weeks. The shortest IP recorded was 32 days and longest 264 days (Figure 1 & 2). IP did not vary for variables investigated. CONCLUSIONS: The estimated mean IP of BU in Victoria is 135 days (IQR: 109-160 days), 4.5 months. The shortest recorded was IP 34 days and longest 264 days. A greater understanding of BU IP will aid clinical risk assessment and future research
Potential Wildlife Sentinels for Monitoring the Endemic Spread of Human Buruli Ulcer in South-East Australia
The last 20 years has seen a significant series of outbreaks of Buruli/Bairnsdale Ulcer (BU), caused by Mycobacterium ulcerans, in temperate south-eastern Australia (state of Victoria). Here, the prevailing view of M. ulcerans as an aquatic pathogen has been questioned by recent research identifying native wildlife as potential terrestrial reservoirs of infection; specifically, tree-dwelling common ringtail and brushtail possums. In that previous work, sampling of environmental possum faeces detected a high prevalence of M. ulcerans DNA in established endemic areas for human BU on the Bellarine Peninsula, compared with non-endemic areas. Here, we report research from an emergent BU focus recently identified on the Mornington Peninsula, confirming associations between human BU and the presence of the aetiological agent in possum faeces, detected by real-time PCR targeting M. ulcerans IS2404, IS2606 and KR. Mycobacterium ulcerans DNA was detected in 20/216 (9.3%) ground collected ringtail possum faecal samples and 4/6 (66.6%) brushtail possum faecal samples. The distribution of the PCR positive possum faecal samples and human BU cases was highly focal: there was a significant non-random cluster of 16 M. ulcerans positive possum faecal sample points detected by spatial scan statistics (P<0.0001) within a circle of radius 0.42 km, within which were located the addresses of 6/12 human cases reported from the area to date; moreover, the highest sample PCR signal strength (equivalent to ≥10(6) organisms per gram of faeces) was found in a sample point located within this cluster radius. Corresponding faecal samples collected from closely adjacent BU-free areas were predominantly negative. Possums may be useful sentinels to predict endemic spread of human BU in Victoria, for public health planning. Further research is needed to establish whether spatial associations represent evidence of direct or indirect transmission between possums and humans, and the mechanism by which this may occur