167 research outputs found

    Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy Associated with E211K Prion Protein Polymorphism

    Get PDF
    The majority of bovine spongiform encephalopathy (BSE) cases have been ascribed to the classical form of the disease. H-type and L-type BSE cases have atypical molecular profiles compared to classical BSE and are thought to arise spontaneously. However, one case of H-type BSE was associated with a heritable E211K mutation in the prion protein gene. The purpose of this study was to describe transmission of this unique isolate of H-type BSE when inoculated into a calf of the same genotype by the intracranial route. Electroretinograms were used to demonstrate preclinical deficits in retinal function, and optical coherence tomography was used to demonstrate an antemortem decrease in retinal thickness. The calf rapidly progressed to clinical disease (9.4 months) and was necropsied. Widespread distribution of abnormal prion protein was demonstrated within neural tissues by western blot and immunohistochemistry. While this isolate is categorized as BSE-H due to a higher molecular mass of the unglycosylated PrPSc isoform, a strong labeling of all 3 PrPSc bands with monoclonal antibodies 6H4 and P4, and a second unglycosylated band at approximately 14 kDa when developed with antibodies that bind in the C-terminal region, it is unique from other described cases of BSE-H because of an additional band 23 kDa demonstrated on western blots of the cerebellum. This work demonstrates that this isolate is transmissible, has a BSE-H phenotype when transmitted to cattle with the K211 polymorphism, and has molecular features that distinguish it from other cases of BSE-H described in the literature

    The N-Terminus of GalE Induces tmRNA Activity in Escherichia coli

    Get PDF
    BACKGROUND: The tmRNA quality control system recognizes stalled translation complexes and facilitates ribosome recycling in a process termed 'ribosome rescue'. During ribosome rescue, nascent chains are tagged with the tmRNA-encoded SsrA peptide, which targets tagged proteins for degradation. In Escherichia coli, tmRNA rescues ribosomes arrested on truncated messages, as well as ribosomes that are paused during elongation and termination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe a new translational pausing determinant that leads to SsrA peptide tagging of the E. coli GalE protein (UDP-galactose 4-epimerase). GalE chains are tagged at more than 150 sites, primarily within distinct clusters throughout the C-terminal domain. These tagging sites do not correspond to rare codon clusters and synonymous recoding of the galE gene had little effect on tagging. Moreover, tagging was largely unaffected by perturbations that either stabilize or destabilize the galE transcript. Examination of GalE-thioredoxin (TrxA) fusion proteins showed that the GalE C-terminal domain is no longer tagged when fused to an N-terminal TrxA domain. Conversely, the N-terminus of GalE induced tagging within the fused C-terminal TrxA domain. CONCLUSIONS/SIGNIFICANCE: These findings suggest that translation of the GalE N-terminus induces subsequent tagging of the C-terminal domain. We propose that co-translational maturation of the GalE N-terminal domain influences ribosome pausing and subsequent tmRNA activity

    The macroecology of chemical communication in lizards: do climatic factors drive the evolution of signalling glands?

    Get PDF
    Chemical communication plays a pivotal role in shaping sexual and ecological interactions among animals. In lizards, fundamental mechanisms of sexual selection such as female mate choice have rarely been shown to be influenced by quantitative phenotypic traits (e.g., ornaments), while chemical signals have been found to potentially influence multiple forms of sexual and social interactions, including mate choice and territoriality. Chemical signals in lizards are secreted by glands primarily located on the edge of the cloacae (precloacal glands, PG) and thighs (femoral glands), and whose interspecific and interclade number ranges from 0 to >100. However, elucidating the factors underlying the evolution of such remarkable variation remains an elusive endeavour. Competing hypotheses suggest a dominant role for phylogenetic conservatism (i.e., species within clades share similar numbers of glands) or for natural selection (i.e., their adaptive diversification results in deviating numbers of glands from ancestors). Using the prolific Liolaemus lizard radiation from South America (where precloacal glands vary from 0-14), we present one of the largest-scale tests of both hypotheses to date. Based on climatic and phylogenetic modelling, we show a clear role for both phylogenetic inertia and adaptation underlying gland variation: (i) solar radiation, net primary productivity, topographic heterogeneity and precipitation range have a significant effect on number of PG variation, (ii) humid and cold environments tend to concentrate species with a higher number of glands, (iii) there is a strong phylogenetic signal that tends to conserve the number of PG within clades. Collectively, our study confirms that the inertia of niche conservatism can be broken down by the need of species facing different selection regimes to adjust their glands to suit the demands of their specific environments

    Linking personality to larval energy reserves in rainbow trout (Oncorhynchus mykiss).

    Get PDF
    There is a surging interest in the evolution, ecology and physiology of personality differences. However, most of the studies in this research area have been performed in adult animals. Trait variations expressed early in development and how they are related to the ontogeny of an animal's personality are far less studied. Genetic differences as well as environmental factors causing functional variability of the central serotonergic system have been related to personality differences in vertebrates, including humans. Such gene-environment interplay suggests that the central serotonergic system plays an important role in the ontogeny of personality traits. In salmonid fishes, the timing of emergence from spawning nests is related to energy reserves, aggression, and social dominance. However, it is currently unknown how the size of the yolk reserve is reflected on aggression and dominance, or if these traits are linked to differences in serotonergic transmission in newly emerged larvae. In this study we investigated the relationship between yolk reserves, social dominance, and serotonergic transmission in newly emerged rainbow trout (Oncorhynchus mykiss) larvae. This was conducted by allowing larvae with the same emergence time, but with different yolk sizes, to interact in pairs for 24 h. The results show that individuals with larger yolks performed more aggressive acts, resulting in a suppression of aggression in individuals with smaller yolks. A higher brain serotonergic activity confirmed subordination in larvae with small yolks. The relationship between social dominance and yolk size was present in siblings, demonstrating a link between interfamily variation in energy reserves and aggression, and suggests that larger yolk reserves fuel a more aggressive personality during the initial territorial establishment in salmonid fishes. Furthermore, socially naĂŻve larvae with big yolks had lower serotonin levels, suggesting that other factors than the social environment causes variation in serotonergic transmission, underlying individual variation in aggressive behavior

    Restricted-Range Fishes and the Conservation of Brazilian Freshwaters

    Get PDF
    Background: Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms) and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce. Methodology/Principal Findings: Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29%) watersheds have lost more than 70% of their original vegetation cover, and only 141 (26%) show significant overlap with formally protected areas or indigenous lands. We detected 220 (40%) critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future. Conclusions/Significance: We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked drainage systems. Proper management (e. g. forestry code enforcement, landscape planning) and conservation (e. g. formal protection) of the 540 watersheds detected herein will be decisive in avoiding species extinction in the richest aquatic ecosystems on the planet.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Gordon and Betty Moore Foundatio

    Inhibition of IGF-1 Signalling Enhances the Apoptotic Effect of AS602868, an IKK2 Inhibitor, in Multiple Myeloma Cell Lines

    Get PDF
    Multiple myeloma (MM) is a B cell neoplasm characterized by bone marrow infiltration with malignant plasma cells. IGF-1 signalling has been explored as a therapeutic target in this disease. We analyzed the effect of the IKK2 inhibitor AS602868, in combination with a monoclonal antibody targeting IGF-1 receptor (anti-IGF-1R) in human MM cell lines. We found that anti-IGF-1R potentiated the apoptotic effect of AS602868 in LP1 and RPMI8226 MM cell lines which express high levels of IGF-1R. Anti-IGF-1R enhanced the inhibitory effect of AS602868 on NF-ÎșB pathway signalling and potentiated the disruption of mitochondrial membrane potential caused by AS602868. These results support the role of IGF-1 signalling in MM and suggest that inhibition of this pathway could sensitize MM cells to NF-ÎșB inhibitors

    Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.

    Get PDF
    The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells. Transplanted epicardial cells formed persistent fibroblast grafts in infarcted hearts. Cotransplantation of hESC-derived epicardial cells and cardiomyocytes doubled graft cardiomyocyte proliferation rates in vivo, resulting in 2.6-fold greater cardiac graft size and simultaneously augmenting graft and host vascularization. Notably, cotransplantation improved systolic function compared with hearts receiving either cardiomyocytes alone, epicardial cells alone or vehicle. The ability of epicardial cells to enhance cardiac graft size and function makes them a promising adjuvant therapeutic for cardiac repair.: This work was supported by the British Heart Foundation (BHF; Grants NH/11/1/28922, G1000847, FS/13/29/30024 and FS/18/46/33663), Oxford-Cambridge Centre for Regenerative Medicine (RM/13/3/30159), the UK Medical Research Council (MRC) and the Cambridge Hospitals National Institute for Health Research Biomedical Research Centre funding (SS), as well as National Institutes of Health Grants P01HL094374, P01GM081619, R01HL12836 and a grant from the Fondation Leducq Transatlantic Network of Excellence (CEM). J.B. was supported by a Cambridge National Institute for Health Research Biomedical Research Centre Cardiovascular Clinical Research Fellowship and subsequently, by a BHF Studentship (Grant FS/13/65/30441). DI received a University of Cambridge Commonwealth Scholarship. LG is supported by BHF Award RM/l3/3/30159 and LPO is funded by a Wellcome Trust Fellowship (203568/Z/16/Z). NF was supported by BHF grants RG/13/14/30314. NL was supported by the Biotechnology and Biological Sciences Research Council (Institute Strategic Programmes BBS/E/B/000C0419 and BBS/E/B/000C0434). SS and MB were supported by the British Heart Foundation Centre for Cardiovascular Research Excellence. Core support was provided by the Wellcome-MRC Cambridge Stem Cell Institute (203151/Z/16/Z), The authors thank Osiris for provision of the primary mesenchymal stem cells (59

    BMC Ophthalmol

    Get PDF
    BACKGROUND: This was an updated network meta-analysis (NMA) of anti-vascular endothelial growth factor (VEGF) agents and laser photocoagulation in patients with diabetic macular edema (DME). Unlike previous NMA that used meta-regression to account for potential confounding by systematic variation in treatment effect modifiers across studies, this update incorporated individual patient-level data (IPD) regression to provide more robust adjustment. METHODS: An updated review was conducted to identify randomised controlled trials for inclusion in a Bayesian NMA. The network included intravitreal aflibercept (IVT-AFL) 2 mg bimonthly (2q8) after 5 initial doses, ranibizumab 0.5 mg as-needed (PRN), ranibizumab 0.5 mg treat-and-extend (T&E), and laser photocoagulation. Outcomes included in the analysis were change in best-corrected visual acuity (BCVA), measured using an Early Treatment Diabetic Retinopathy Study (ETDRS) chart, and patients with >/=10 and >/= 15 ETDRS letter gains/losses at 12 months. Analyses were performed using networks restricted to IPD-only and IPD and aggregate data with (i) no covariable adjustment, (ii) covariable adjustment for baseline BVCA assuming common interaction effects (against reference treatment), and (iii) covariable adjustments specific to each treatment comparison (restricted to IPD-only network). RESULTS: Thirteen trials were included in the analysis. IVT-AFL 2q8 was superior to laser in all analyses. IVT-AFL 2q8 showed strong evidence of superiority (95% credible interval [CrI] did not cross null) versus ranibizumab 0.5 mg PRN for mean change in BCVA (mean difference 5.20, 95% CrI 1.90-8.52 ETDRS letters), >/=15 ETDRS letter gain (odds ratio [OR] 2.30, 95% CrI 1.12-4.20), and >/=10 ETDRS letter loss (OR 0.25, 95% CrI 0.05-0.74) (IPD and aggregate random-effects model with baseline BCVA adjustment). IVT-AFL 2q8 was not superior to ranibizumab 0.5 mg T&E for mean change in BCVA (mean difference 5.15, 95% CrI -0.26-10.61 ETDRS letters) (IPD and aggregate random-effects model). CONCLUSIONS: This NMA, which incorporated IPD to improve analytic robustness, showed evidence of superiority of IVT-AFL 2q8 to laser and ranibizumab 0.5 mg PRN. These results were irrespective of adjustment for baseline BCVA

    Anthropogenic perturbation of the carbon fluxes from land to ocean

    Full text link
    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.Peer reviewe
    • 

    corecore