114 research outputs found

    Fresh-blood-free diet for rearing malaria mosquito vectors

    Get PDF
    Mosquito breeding depends on the supply of fresh vertebrate blood, a major bottleneck for large-scale production of Anopheles spp. Feeding alternatives to fresh blood are thus a priority for research, outdoor large-cage trials and control interventions. Several artificial meal compositions were tested and Anopheles oogenesis, egg laying and development into the next generation of adult mosquitoes were followed. We identified blood-substitute-diets that supported ovarian development, egg maturation and fertility as well as, low progeny larval mortality, and normal development of offspring into adult mosquitoes. The formulated diet is an effective artificial meal, free of fresh blood that mimics a vertebrate blood meal and represents an important advance for the sustainability of Anopheles mosquito rearing in captivity.Agência financiadora / Número do subsídio Bill and Melinda Gates Foundation OPP1138841 Fundacao para a Ciencia e Tecnologia GHTM - UID/Multi/04413/201 CCMAR - UID/Multi/04326/2013 UID/Multi/04326/2013 RF SFRH/BPD/89811/2012 FAPEAM, Brazil 19716.UNI472.2459.20022014info:eu-repo/semantics/publishedVersio

    Two Plant Viral Suppressors of Silencing Require the Ethylene-Inducible Host Transcription Factor RAV2 to Block RNA Silencing

    Get PDF
    RNA silencing is a highly conserved pathway in the network of interconnected defense responses that are activated during viral infection. As a counter-defense, many plant viruses encode proteins that block silencing, often also interfering with endogenous small RNA pathways. However, the mechanism of action of viral suppressors is not well understood and the role of host factors in the process is just beginning to emerge. Here we report that the ethylene-inducible transcription factor RAV2 is required for suppression of RNA silencing by two unrelated plant viral proteins, potyvirus HC-Pro and carmovirus P38. Using a hairpin transgene silencing system, we find that both viral suppressors require RAV2 to block the activity of primary siRNAs, whereas suppression of transitive silencing is RAV2-independent. RAV2 is also required for many HC-Pro-mediated morphological anomalies in transgenic plants, but not for the associated defects in the microRNA pathway. Whole genome tiling microarray experiments demonstrate that expression of genes known to be required for silencing is unchanged in HC-Pro plants, whereas a striking number of genes involved in other biotic and abiotic stress responses are induced, many in a RAV2-dependent manner. Among the genes that require RAV2 for induction by HC-Pro are FRY1 and CML38, genes implicated as endogenous suppressors of silencing. These findings raise the intriguing possibility that HC-Pro-suppression of silencing is not caused by decreased expression of genes that are required for silencing, but instead, by induction of stress and defense responses, some components of which interfere with antiviral silencing. Furthermore, the observation that two unrelated viral suppressors require the activity of the same factor to block silencing suggests that RAV2 represents a control point that can be readily subverted by viruses to block antiviral silencing

    Virus Adaptation by Manipulation of Host's Gene Expression

    Get PDF
    Viruses adapt to their hosts by evading defense mechanisms and taking over cellular metabolism for their own benefit. Alterations in cell metabolism as well as side-effects of antiviral responses contribute to symptoms development and virulence. Sometimes, a virus may spill over from its usual host species into a novel one, where usually will fail to successfully infect and further transmit to new host. However, in some cases, the virus transmits and persists after fixing beneficial mutations that allow for a better exploitation of the new host. This situation would represent a case for a new emerging virus. Here we report results from an evolution experiment in which a plant virus was allowed to infect and evolve on a naïve host. After 17 serial passages, the viral genome has accumulated only five changes, three of which were non-synonymous. An amino acid substitution in the viral VPg protein was responsible for the appearance of symptoms, whereas one substitution in the viral P3 protein the epistatically contributed to exacerbate severity. DNA microarray analyses show that the evolved and ancestral viruses affect the global patterns of host gene expression in radically different ways. A major difference is that genes involved in stress and pathogen response are not activated upon infection with the evolved virus, suggesting that selection has favored viral strategies to escape from host defenses

    Functional Identification and Characterization of the Brassica Napus Transcription Factor Gene BnAP2, the Ortholog of Arabidopsis Thaliana APETALA2

    Get PDF
    BnAP2, an APETALA2 (AP2)-like gene, has been isolated from Brassica napus cultivar Zhongshuang 9. The cDNA of BnAP2, with 1, 299 bp in length, encoded a transcription factor comprising of 432 amino acid residues. Results from complementary experiment indicated that BnAP2 was completely capable of restoring the phenotype of Arabidopsis ap2-11 mutant. Together with the sequence and expression data, the complementation data suggested that BnAP2 encodes the ortholog of AtAP2. To address the transcriptional activation of BnAP2, we performed transactivation assays in yeast. Fusion protein of BnAP2 with GAL4 DNA binding domain strongly activated transcription in yeast, and the transactivating activity of BnAP2 was localized to the N-terminal 100 amino acids. To further study the function of BnAP2 involved in the phenotype of B. napus, we used a transgenic approach that involved targeted RNA interference (RNAi) repression induced by ihp-RNA. Floral various phenotype defectives and reduced female fertility were observed in B. napus BnAP2-RNAi lines. Loss of the function of BnAP2 gene also resulted in delayed sepal abscission and senescence with the ethylene-independent pathway. In the strong BnAP2-RNAi lines, seeds showed defects in shape, structure and development and larger size. Strong BnAP2-RNAi and wild-type seeds initially did not display a significant difference in morphology at 10 DAF, but the development of BnAP2-RNAi seeds was slower than that of wild type at 20 DAF, and further at 30 DAF, wild-type seeds were essentially at their final size, whereas BnAP2-RNAi seeds stopped growing and developing and gradually withered

    Platelet-Activating Factor Receptor Plays a Role in Lung Injury and Death Caused by Influenza A in Mice

    Get PDF
    Influenza A virus causes annual epidemics which affect millions of people worldwide. A recent Influenza pandemic brought new awareness over the health impact of the disease. It is thought that a severe inflammatory response against the virus contributes to disease severity and death. Therefore, modulating the effects of inflammatory mediators may represent a new therapy against Influenza infection. Platelet activating factor (PAF) receptor (PAFR) deficient mice were used to evaluate the role of the gene in a model of experimental infection with Influenza A/WSN/33 H1N1 or a reassortant Influenza A H3N1 subtype. The following parameters were evaluated: lethality, cell recruitment to the airways, lung pathology, viral titers and cytokine levels in lungs. The PAFR antagonist PCA4248 was also used after the onset of flu symptoms. Absence or antagonism of PAFR caused significant protection against flu-associated lethality and lung injury. Protection was correlated with decreased neutrophil recruitment, lung edema, vascular permeability and injury. There was no increase of viral load and greater recruitment of NK1.1+ cells. Antibody responses were similar in WT and PAFR-deficient mice and animals were protected from re-infection. Influenza infection induces the enzyme that synthesizes PAF, lyso-PAF acetyltransferase, an effect linked to activation of TLR7/8. Therefore, it is suggested that PAFR is a disease-associated gene and plays an important role in driving neutrophil influx and lung damage after infection of mice with two subtypes of Influenza A. Further studies should investigate whether targeting PAFR may be useful to reduce lung pathology associated with Influenza A virus infection in humans

    A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by Prunus necrotic ringspot virus and Peach latent mosaic viroid

    Get PDF
    [EN] Background: Microarray profiling is a powerful technique to investigate expression changes of large amounts of genes in response to specific environmental conditions. The majority of the studies investigating gene expression changes in virus-infected plants are limited to interactions between a virus and a model host plant, which usually is Arabidopsis thaliana or Nicotiana benthamiana. In the present work, we performed microarray profiling to explore changes in the expression profile of field-grown Prunus persica (peach) originating from Chile upon single and double infection with Prunus necrotic ringspot virus (PNRSV) and Peach latent mosaic viroid (PLMVd), worldwide natural pathogens of peach trees. Results: Upon single PLMVd or PNRSV infection, the number of statistically significant gene expression changes was relatively low. By contrast, doubly-infected fruits presented a high number of differentially regulated genes. Among these, down-regulated genes were prevalent. Functional categorization of the gene expression changes upon double PLMVd and PNRSV infection revealed protein modification and degradation as the functional category with the highest percentage of repressed genes whereas induced genes encoded mainly proteins related to phosphate, C-compound and carbohydrate metabolism and also protein modification. Overrepresentation analysis upon double infection with PLMVd and PNRSV revealed specific functional categories over- and underrepresented among the repressed genes indicating active counter-defense mechanisms of the pathogens during infection. Conclusions: Our results identify a novel synergistic effect of PLMVd and PNRSV on the transcriptome of peach fruits. We demonstrate that mixed infections, which occur frequently in field conditions, result in a more complex transcriptional response than that observed in single infections. Thus, our data demonstrate for the first time that the simultaneous infection of a viroid and a plant virus synergistically affect the host transcriptome in infected peach fruits. These field studies can help to fully understand plant-pathogen interactions and to develop appropriate crop protection strategies.We thank Drs M.A. Perez-Amador y J. Gadea for helping in the result analysis. This work was supported by grant BIO2011-25018 from the Spanish granting agency Direccion General de Investigacion Cientifica for the transcriptomic analyses and from the grant 2009CL0020 from the bilateral project INIA-Chile/CSIC-Spain for the phytosanitary evaluation. MC Herranz was the recipient of a contract from the Juan de la Cierva program of the Ministerio de Educacion y Ciencia of Spain.Herranz Gordo, MDC.; Niehl, A.; Rosales, M.; Fiore, N.; Zamorano, A.; Granell Richart, A.; Pallás Benet, V. (2013). A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by Prunus necrotic ringspot virus and Peach latent mosaic viroid. Virology Journal. 10:11-15. https://doi.org/10.1186/1743-422X-10-164S111510Pallas V, Garcia JA: How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 2011, 92: 2691-2705.Whitham SA, Yang C, Goodin MM: Global impact: elucidating plant responses to viral infection. Mol Plant Microbe Interact 2006, 19: 1207-1215.Havelda Z, Varallyay E, Valoczi A, Burgyan J: Plant virus infection-induced persistent host gene downregulation in systemically infected leaves. Plant J 2008, 55: 278-288.Aranda M, Maule A: Virus-induced host gene shutoff in animals and plants. Virology 1998, 243: 261-267.Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM: Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 2003, 33: 271-283.Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S: Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 2007, 51: 941-954.Hadidi A, Barba M: Economic impact of pome and stone fruit viruses and viroids. In Virus and Virus Like Diseases of Pome and Stone Fruits. Edited by: Hadidi A, Barba M, Candresse T, Jelkmann W. St Paul, MN: American Phytopathological Society; 2011:1-8.Flores R, Delgado S, Rodio ME, Ambros S, Hernandez C, Serio FD: Peach latent mosaic viroid: not so latent. Mol Plant Pathol 2006, 7: 209-221.Pallas V, Aparicio F, Herranz MC, Amari K, Sanchez-Pina MA, Myrta A, Sanchez-Navarro JA: Ilarviruses of Prunus spp.: A continued concern for fruit trees. Phytopathology 2012,102(12):1108-1120.Rowland O, Jones JD: Unraveling regulatory networks in plant defense using microarrays. Genome Biol 2001,2(1):1001.1-1001.3.Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM: Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 2005, 79: 2517-2527.Senthil G, Liu H, Puram VG, Clark A, Stromberg A, Goodin MM: Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J Gen Virol 2005, 86: 2615-2625.Marathe R, Guan Z, Anandalakshmi R, Zhao H, Dinesh-Kumar SP: Study of Arabidopsis thaliana resistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol 2004, 55: 501-520.Agudelo-Romero P, Carbonell P, de la Iglesia F, Carrera J, Rodrigo G, Jaramillo A, Perez-Amador MA, Elena SF: Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J 2008, 5: 92.Itaya A, Matsuda Y, Gonzales RA, Nelson RS, Ding B: Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. Mol Plant Microbe Interact 2002, 15: 990-999.Huang Z, Yeakley JM, Garcia EW, Holdridge JD, Fan JB, Whitham SA: Salicylic acid-dependent expression of host genes in compatible Arabidopsis-virus interactions. Plant Physiol 2005, 137: 1147-1159.Rizza S, Conesa A, Juarez J, Catara A, Navarro L, Duran-Vila N, Ancillo G: Microarray analysis of Etrog citron (Citrus medica L.) reveals changes in chloroplast, cell wall, peroxidase and symporter activities in response to viroid infection. Mol Plant Pathol 2012,13(8):852-864.Golem S, Culver JN: Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant Microbe Interact 2003, 16: 681-688.Dardick C: Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Mol Plant Microbe Interact 2007, 20: 1004-1017.Hull R: In Matthews’ Plant Virology. London: Edited by Academic Press; 2002.Gonzalez-Jara P, Tenllado F, Martinez-Garcia B, Atencio FA, Barajas D, Vargas M, Diaz-Ruiz J, Diaz-Ruiz JR: Host-dependent differences during synergistic infection by Potyviruses with potato virus X. Mol Plant Pathol 2004, 5: 29-35.Gonzalez-Jara P, Atencio FA, Martinez-Garcia B, Barajas D, Tenllado F, Diaz-Ruiz JR: A Single Amino Acid Mutation in the Plum pox virus Helper Component-Proteinase Gene Abolishes Both Synergistic and RNA Silencing Suppression Activities. Phytopathology 2005, 95: 894-901.Vance VB: Replication of potato virus X RNA is altered in coinfections with potato virus Y. Virology 1991, 182: 486-494.Garcia-Marcos A, Pacheco R, Martianez J, Gonzalez-Jara P, Diaz-Ruiz JR, Tenllado F: Transcriptional changes and oxidative stress associated with the synergistic interaction between Potato virus X and Potato virus Y and their relationship with symptom expression. Mol Plant Microbe Interact 2009, 22: 1431-1444.Postnikova OA, Nemchinov LG: Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol J 2012, 9: 101.Zanchin A, Bonghi C, Casadoro G, Ramina A, Rascio N: Cell enlargement and cell separation during peach fruit development. International Journal of Plant Science 1994, 155: 49-56.Herranz MC, Sanchez-Navarro JA, Aparicio F, Pallas V: Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or ‘polyprobe’. J Virol Methods 2005, 124: 49-55.Pallas V, Mas P, Sanchez-Navarro JA: Detection of plant RNA viruses by nonisotopic dot-blot hybridization. Methods Mol Biol 1998, 81: 461-468.Lilly ST, Drummond RS, Pearson MN, MacDiarmid RM: Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. Mol Plant Microbe Interact 2011, 24: 294-304.Cosgrove JD: Expansive growth of plant cell walls. Plant Physiol Biochem 2000,38(1–2):109-124.Tessitori M, Maria G, Capasso C, Catara G, Rizza S, De Luca V, Catara A, Capasso A, Carginale V: Differential display analysis of gene expression in Etrog citron leaves infected by Citrus viroid III. Biochim Biophys Acta 2007, 1769: 228-235.Rizza S, Capasso C, Catara A, Capasso A, Conte E, Catara A Proceedings of the 17th Conference of the International Organization of Citrus Virologists-IOCV, pp. XVII. In Transcriptional response of Troyer citrange, sour orange and alemow rootstocks to Citrus viroid IIIb (CVd-IIIb) infection. Adana, Turkey: Conference of the International Organization of Citrus Virologists; 2010:142-149. http://www.ivia.es/iocv/Owens RA, Tech KB, Shao JY, Sano T, Baker CJ: Global analysis of tomato gene expression during Potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. Mol Plant Microbe Interact 2012, 25: 582-598.Ogundiwin EA, Marti C, Forment J, Pons C, Granell A, Gradziel TM, Peace CP, Crisosto CH: Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 2008, 68: 379-397.Sánchez-Navarro JA FA, Rowhani A, Pallás V: Comparative analysis of ELISA, nonradioactive molecular hybridization and PCR for the detection of Prunus necrotic ringspot virus in herbaceous and prunus host. Plant Pathol 1998, 47: 780-786.Astruc N, Marcos JF, Macquaire G, Candresse T, Pallas V: Studies on the diagnosis of hop stunt viroid in fruit trees: Identification of new hosts and application of a nucleic acid extraction procedure based on non-organic solvents. Eur J Plant Pathol 1996, 102: 837-846.Myrta A, Di Terlizzi B, Pallas V, Savino V: Viruses and viroids of apricot in the Mediterranean: incidence and biodiversity. Acta Horticulturae 2006, 701: 409-417.Bouzayen M, Latché A, Nath P, Pech JC: Mechanism of fruit ripening. In Plant Developmental Biology- Biotechnological Perspectives: Volume I Edited by: Pua EC, Darvey MR. 2010, 319-339. Chapter 16Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, T P: The use of microarray mPEACH 1.0 to investigate transcriptome changes during transition from pre-climateric to climacteric phase in peach fruit. Plant Sci 2006, 170: 606-613.Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, Budde CO, Andreo CS, Lara MV, Fernie AR MFD: Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol 2011,157(4):1696-1710.Manganaris GA RA, Bassi D, Geuna F, Ramina A, Tonutti P, Bonghi C: Comparative transcript profiling of apricot (Prunus armeniaca L.) fruit development and on-tree ripening. Tree Genet Genomes 2011, 7: 609-616.Uyemoto JK, Scott SW: Important diseases of Prunus caused by viruses and other graft-transmissible pathogens in California and South Carolina. Plant Dis 1992, 76: 5-11.Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, et al.: Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 2005, 310: 121-125.Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JA, Palme K: Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 2008, 1: 321-337.Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN: Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol 2005, 79: 2549-2558.Padmanabhan MS, Shiferaw H, Culver JN: The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol Plant Microbe Interact 2006, 19: 864-873.Padmanabhan MS, Kramer SR, Wang X, Culver JN: Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J Virol 2008, 82: 2477-2485.Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI: The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 2006, 140: 127-139.Whenham RJ, Fraser RSS, Brown LP, Payne JA: Tobacco-mosaic-virus-induced increase in abscisic-acid concentration in tobacco leaves: Intracellular location in light and dark-green areas, and relationship to symptom development. Planta 1986, 168: 592-598.Bari R, Jones JD: Role of plant hormones in plant defence responses. Plant Mol Biol 2009, 69: 473-488.Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D: Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 2006, 29: 1033-1048.Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, Theodoulou FL: Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J 2006, 48: 743-756.Amari K, Diaz-Vivancos P, Pallas V, Sanchez-Pina MA, Hernandez JA: Oxidative stress induction by Prunus necrotic ringspot virus infection in apricot seeds. Physiol Plant 2007, 131: 302-310.Gilroy EM, Hein I, van der Hoorn R, Boevink PC, Venter E, McLellan H, Kaffarnik F, Hrubikova K, Shaw J, Holeva M, et al.: Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J 2007, 52: 1-13.Kruger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L, Jones JD: A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 2002, 296: 744-747.Bernoux M, Timmers T, Jauneau A, Briere C, De Wit PJ, Marco Y, Deslandes L: RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell 2008, 20: 2252-2264.Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RA: Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. Plant Cell 2008, 20: 1169-1183.Van Esse HP, Van’t Klooster JW, Bolton MD, Yadeta KA, Van Baarlen P, Boeren S, Vervoort J, De Wit PJ, Thomma BP: The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 2008, 20: 1948-1963.Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn RA, Kamoun S: Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci U S A 2009, 106: 1654-1659.Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S: A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 2007, 143: 364-377.Rooney H, Van’t Klooster J, Van der Hoorn R, Joosten M, Jones J: Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 2005, 308: 1783-1786.Auger AJ: Tomato ringspot virus associated with brownline disease on prune trees in Chile. Acta Horticulturae 1989, 235: 197-204.Herrera G: Enfermedades causadas por virus en frutales en Chile. Santiago, Chile: Instituto de Investigación Agropecuaria; 2001. Boletín INIA N°52. 65pFiore N, Abou Ghanem-Sabanadzovic N, Infante R, Myrta A, Pallás V: Detection of Peach latent mosaic viroid in stone fruits from Chile. In Option Méditerranéennes, Sér. B/n°45 –Virus ad virus-like disease of stone fruits, with particular reference to the Mediterranean region Edited by: Myrta A, Di Terlizzi B, Savino V. 2003, 143-145.Torres H, Gómez G, Pallás V, Stamo B, Shalaby A, Aouane B, Gavriel I, Kominek P, Caglayan K, Sipahioglu M, et al.: Detection by tissue printing of stone fruit viroids, from europe, the mediterranean and north and south America. Acta Horticulturae 2004, 657: 379-383.Peiró A, Pallás V, Sánchez-Navarro JA: Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. Eur J Plant Pathol 2012,132(4):469-475.Meisel L, Fonseca B, Gonzalez S, Baeza-Yates R, Cambiazo V, Campos R, Gonzalez M, Orellana A, Retamales J, Silva H: A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol Res 2005, 38: 83-88.Van Gelder RN, Von Zastrow ME, Yool A, Dement WC, Barchas JD JHE: Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 1990,87(5):1663-1667.Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98: 5116-5121.Sanchez-Navarro JA, Canizares MC, Cano EA, Pallas V: Simultaneous detection of five carnation viruses by non-isotopic molecular hybridization. J Virol Methods 1999, 82: 167-175
    • …
    corecore