1,363 research outputs found

    SUSY in the sky

    Full text link
    Spinning particles in curved space-time can have fermionic symmetries generated by the square root of bosonic constants of motion other than the Hamiltonian. We present a general analysis of the conditions under which such new supersymmetries appear, and discuss the Poisson-Dirac algebra of the resulting set of charges, including the conditions of closure of the new algebra. An example of a new non-trivial supersymmetry is found in black-hole solutions of the Kerr-Newman type and corresponds to the Killing-Yano tensor, which plays an important role in solving the Dirac equation in these black-hole metrics.Comment: 28, NIKHEF-H/93-04 and DAMTP R92/4

    Killing tensors and a new geometric duality

    Get PDF
    We present a theorem describing a dual relation between the local geometry of a space admitting a symmetric second-rank Killing tensor, and the local geometry of a space with a metric specified by this Killing tensor. The relation can be generalized to spinning spaces, but only at the expense of introducing torsion. This introduces new supersymmetries in their geometry. Interesting examples in four dimensions include the Kerr-Newman metric of spinning black-holes and self-dual Taub-NUT.Comment: 20 pages (a4), standard LaTeX, no figure

    Histopathological Characterization of the Lesions of Contagious Ovine Digital Dermatitis and Immunolabelling of Treponema-like Organisms

    Get PDF
    SummaryContagious ovine digital dermatitis (CODD) is a cause of severe lameness in sheep and the three Treponema phylogroups Treponema medium/Treponema vincentii-like, Treponema phagedenis-like and Treponema pedis have been associated with clinical disease. The aims of this study were: (1) to describe the histopathological changes associated with each previously established grade of clinical lesion, and (2) to investigate immunohistochemically the association of the Treponema-like organisms with the observed histopathological changes. Early lesions were characterized by lymphoplasmacytic infiltration of the distal digital skin, with suppurative coronitis and intracorneal pustules. In more advanced stages of the disease there was complete separation of the dorsal wall of the hoof with a necrotizing and fibrinosuppurative exudate and dermatitis. The later lesions were mostly resolved, but with milder suppurative changes remaining within the cornified layer and periosteal reaction of the dorsal aspect of the distal phalanx. Large numbers of Treponema-like organisms were identified within early grade lesions (as well as later, more advanced grade lesions) and were specifically associated with the observed histopathological changes. The results of this study provide some evidence in support of the hypothesis that the three CODD-associated Treponema phylogroups are involved in the aetiopathogenesis of this disease

    Variational description of multi-fluid hydrodynamics: Uncharged fluids

    Full text link
    We present a formalism for Newtonian multi-fluid hydrodynamics derived from an unconstrained variational principle. This approach provides a natural way of obtaining the general equations of motion for a wide range of hydrodynamic systems containing an arbitrary number of interacting fluids and superfluids. In addition to spatial variations we use ``time shifts'' in the variational principle, which allows us to describe dissipative processes with entropy creation, such as chemical reactions, friction or the effects of external non-conservative forces. The resulting framework incorporates the generalization of the entrainment effect originally discussed in the case of the mixture of two superfluids by Andreev and Bashkin. In addition to the conservation of energy and momentum, we derive the generalized conservation laws of vorticity and helicity, and the special case of Ertel's theorem for the single perfect fluid. We explicitly discuss the application of this framework to thermally conducting fluids, superfluids, and superfluid neutron star matter. The equations governing thermally conducting fluids are found to be more general than the standard description, as the effect of entrainment usually seems to be overlooked in this context. In the case of superfluid He4 we recover the Landau--Khalatnikov equations of the two-fluid model via a translation to the ``orthodox'' framework of superfluidity, which is based on a rather awkward choice of variables. Our two-fluid model for superfluid neutron star matter allows for dissipation via mutual friction and also ``transfusion'' via beta-reactions between the neutron fluid and the proton-electron fluid.Comment: uses RevTeX 4; 20 pages. To appear in PRD. v2: removed discussion of charged fluids and coupling to electromagnetic fields, which are submitted as a separate paper for a clearer presentation v3: fixed typo in Eq.(9), updated some reference

    Neutron Scattering Study of Crystal Field Energy Levels and Field Dependence of the Magnetic Order in Superconducting HoNi2B2C

    Full text link
    Elastic and inelastic neutron scattering measurements have been carried out to investigate the magnetic properties of superconducting (Tc~8K) HoNi2B2C. The inelastic measurements reveal that the lowest two crystal field transitions out of the ground state occurat 11.28(3) and 16.00(2) meV, while the transition of 4.70(9) meV between these two levels is observed at elevated temperatures. The temperature dependence of the intensities of these transitions is consistent with both the ground state and these higher levels being magnetic doublets. The system becomes magnetically long range ordered below 8K, and since this ordering energy kTN ~ 0.69meV << 11.28meV the magnetic properties in the ordered phase are dominated by the ground-state spin dynamics only. The low temperature structure, which coexists with superconductivity, consists of ferromagnetic sheets of Ho{3+ moments in the a-b plane, with the sheets coupled antiferromagnetically along the c-axis. The magnetic state that initially forms on cooling, however, is dominated by an incommensurate spiral antiferromagnetic state along the c-axis, with wave vector qc ~0.054 A-1, in which these ferromagnetic sheets are canted from their low temperature antiparallel configuration by ~17 deg. The intensity for this spiral state reaches a maximum near the reentrant superconducting transition at ~5K; the spiral state then collapses at lower temperature in favor of the commensurate antiferromagnetic state. We have investigated the field dependence of the magnetic order at and above this reentrant superconducting transition. Initially the field rotates the powder particles to align the a-b plane along the field direction, demonstrating that the moments strongly prefer to lie within this plane due to the crystal field anisotropy. Upon subsequently increasing the field atComment: RevTex, 7 pages, 11 figures (available upon request); Physica

    Inhomogeneities in dusty universe - a possible alternative to dark energy?

    Full text link
    There have been of late renewed debates on the role of inhomogeneities to explain the observed late acceleration of the universe. We have looked into the problem analytically with the help of the well known spherically symmetric but inhomogeneous Lemaitre-Tolman-Bondi(LTB) model generalised to higher dimensions. It is observed that in contrast to the claim made by Kolb et al the presence of inhomogeneities as well as extra dimensions can not reverse the signature of the deceleration parameter if the matter field obeys the energy conditions. The well known Raychaudhuri equation also points to the same result. Without solving the field equations explicitly it can, however, be shown that although the total deceleration is positive everywhere nevertheless it does not exclude the possibility of having radial acceleration, even in the pure dust universe, if the angular scale factor is decelerating fast enough and vice versa. Moreover it is found that introduction of extra dimensions can not reverse the scenario. To the contrary it actually helps the decelerating process.Comment: 14 pages, 4 figure

    Targeting Conservation Investments in Heterogeneous Landscapes: A distance function approach and application to watershed management

    Get PDF
    To achieve a given level of an environmental amenity at least cost, decision-makers must integrate information about spatially variable biophysical and economic conditions. Although the biophysical attributes that contribute to supplying an environmental amenity are often known, the way in which these attributes interact to produce the amenity is often unknown. Given the difficulty in converting multiple attributes into a unidimensional physical measure of an environmental amenity (e.g., habitat quality), analyses in the academic literature tend to use a single biophysical attribute as a proxy for the environmental amenity (e.g., species richness). A narrow focus on a single attribute, however, fails to consider the full range of biophysical attributes that are critical to the supply of an environmental amenity. Drawing on the production efficiency literature, we introduce an alternative conservation targeting approach that relies on distance functions to cost-efficiently allocate conservation funds across a spatially heterogeneous landscape. An approach based on distance functions has the advantage of not requiring a parametric specification of the amenity function (or cost function), but rather only requiring that the decision-maker identify important biophysical and economic attributes. We apply the distance-function approach empirically to an increasingly common, but little studied, conservation initiative: conservation contracting for water quality objectives. The contract portfolios derived from the distance-function application have many desirable properties, including intuitive appeal, robust performance across plausible parametric amenity measures, and the generation of ranking measures that can be easily used by field practitioners in complex decision-making environments that cannot be completely modeled. Working Paper # 2002-01

    Global modelling of the early Martian climate under a denser CO2 atmosphere: Water cycle and ice evolution

    Full text link
    We discuss 3D global simulations of the early Martian climate that we have performed assuming a faint young Sun and denser CO2 atmosphere. We include a self-consistent representation of the water cycle, with atmosphere-surface interactions, atmospheric transport, and the radiative effects of CO2 and H2O gas and clouds taken into account. We find that for atmospheric pressures greater than a fraction of a bar, the adiabatic cooling effect causes temperatures in the southern highland valley network regions to fall significantly below the global average. Long-term climate evolution simulations indicate that in these circumstances, water ice is transported to the highlands from low-lying regions for a wide range of orbital obliquities, regardless of the extent of the Tharsis bulge. In addition, an extended water ice cap forms on the southern pole, approximately corresponding to the location of the Noachian/Hesperian era Dorsa Argentea Formation. Even for a multiple-bar CO2 atmosphere, conditions are too cold to allow long-term surface liquid water. Limited melting occurs on warm summer days in some locations, but only for surface albedo and thermal inertia conditions that may be unrealistic for water ice. Nonetheless, meteorite impacts and volcanism could potentially cause intense episodic melting under such conditions. Because ice migration to higher altitudes is a robust mechanism for recharging highland water sources after such events, we suggest that this globally sub-zero, `icy highlands' scenario for the late Noachian climate may be sufficient to explain most of the fluvial geology without the need to invoke additional long-term warming mechanisms or an early warm, wet Mars.Comment: Minor revisions to text, one new table, figs. 1,3 11 and 18 redon
    • …
    corecore