Spinning particles in curved space-time can have fermionic symmetries
generated by the square root of bosonic constants of motion other than the
Hamiltonian. We present a general analysis of the conditions under which such
new supersymmetries appear, and discuss the Poisson-Dirac algebra of the
resulting set of charges, including the conditions of closure of the new
algebra. An example of a new non-trivial supersymmetry is found in black-hole
solutions of the Kerr-Newman type and corresponds to the Killing-Yano tensor,
which plays an important role in solving the Dirac equation in these black-hole
metrics.Comment: 28, NIKHEF-H/93-04 and DAMTP R92/4