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Targeting Conservation Investments in Heterogeneous Landscapes:  a distance function 
approach and application to watershed management 
 
 
Abstract 
 

To achieve a given level of an environmental amenity at least cost, decision-makers must 

integrate information about spatially variable biophysical and economic conditions.  Although 

the biophysical attributes that contribute to supplying an environmental amenity are often 

known, the way in which these attributes interact to produce the amenity is often unknown.  

Given the difficulty in converting multiple attributes into a unidimensional physical measure of 

an environmental amenity (e.g., habitat quality), analyses in the academic literature tend to use a 

single biophysical attribute as a proxy for the environmental amenity (e.g., species richness).  A 

narrow focus on a single attribute, however, fails to consider the full range of biophysical 

attributes that are critical to the supply of an environmental amenity.  Drawing on the production 

efficiency literature, we introduce an alternative conservation targeting approach that relies on 

distance functions to cost-efficiently allocate conservation funds across a spatially heterogeneous 

landscape.  An approach based on distance functions has the advantage of not requiring a 

parametric specification of the amenity function (or cost function), but rather only requiring that 

the decision-maker identify important biophysical and economic attributes.  We apply the 

distance-function approach empirically to an increasingly common, but little studied, 

conservation initiative:  conservation contracting for water quality objectives.  The contract 

portfolios derived from the distance-function application have many desirable properties, 

including intuitive appeal, robust performance across plausible parametric amenity measures, 

and the generation of ranking measures that can be easily used by field practitioners in complex 

decision-making environments that cannot be completely modeled.



I.  Introduction 

Given the difficulty of measuring environmental benefits in currency, many economic 

analyses focus on achieving “efficiency without optimality” [Baumol and Oates 1988: 159].  To 

achieve a given level of an environmental amenity at least cost, decision-makers must integrate 

information about spatially variable biophysical and economic conditions.  In the case of 

endangered species conservation, for example, previous analyses have focused on maximizing, 

subject to a budget constraint, biological diversity measures [Solow et al. 1993; Weitzman 1992, 

1993, 1998], habitat priority indices [Balmford et al. 2000], or the total number of species 

conserved [Ando et al., 1998; Montgomery 1995; Polasky and Solow 1995; Polasky et al. 1993, 

2001].  In the case of the multi-billion dollar U.S. Conservation Reserve Program, Babcock et al. 

[1996, 1997] focused on separately maximizing individual proxies of environmental amenities.  

Other studies have looked at the allocation of scarce budgets in the cleanup of hazardous waste 

sites [Hamilton and Viscusi 1999; Viscusi and Hamilton 1999]. 

Most studies of cost-efficient conservation policy interventions have tended to use a 

single biophysical attribute (e.g., species absence or presence, genetic dissimilarity between 

species, erodibility of soil, distance to surface water) as a proxy for an environmental amenity.  

A narrow focus on a single attribute, however, fails to consider the full range of biophysical 

attributes that are critical to the supply of an environmental amenity [Noss 1990].  Most real-

world conservation initiatives, like the U.S. Conservation Reserve Program [USDA 1999] or 

World Wildlife Fund’s Global 200 initiative [Olson et al. 2000], identify multiple biophysical 

attributes (or amenities) of interest. 

The use of a single biophysical attribute as a proxy for an environmental amenity is 

understandable given that scientists and practitioners often find it difficult to convert multiple 
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biophysical attributes into a single environmental amenity measure.  Parametric environmental 

amenity functions are usually absent or controversial.  Although the biophysical attributes that 

contribute to supplying an environmental amenity like water quality are often known (e.g., 

riparian soil type, drainage area), the way in which these attributes interact to produce the 

amenity is often unknown. 

Based on this observation, we introduce an approach that relies on distance functions to 

cost-efficiently allocate conservation funds across a spatially heterogeneous landscape.  Distance 

functions allow one to describe a multi-input, multi-output production technologies without the 

need to specify a price vector (i.e., attribute weights) or a behavioral objective on the part of the 

production unit (in this case, a parcel of land).  They have been used in economics for many 

decades [Shephard 1970], but have seen resurgence in recent years [e.g., Chambers et al. 1996, 

1998; Chavas and Cox 1999; Färe and Grosskopf 1990, 1998, 2000; Lynch and Musser 2001].  

An approach based on distance functions has the advantage of not requiring parametric 

specification of an amenity function (or a cost function).  The approach only requires that the 

decision-maker identify important biophysical and economic attributes. 

We apply the distance function approach empirically to an increasingly common, but 

little studied, conservation initiative:  conservation contracting for water quality objectives.  The 

contract portfolios derived from the distance-function application have many desirable 

properties, including intuitive appeal, robust performance across plausible parametric amenity 

measures, and the generation of ranking measures that can be easily used by field practitioners in 

complex decision-making environments that cannot be completely modeled.  Although we focus 

on the case of multiple biophysical attributes, the approach easily generalizes to cases in which 

parametric amenity functions are known but a conservation agent is interested in multiple 
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amenities (e.g., affecting land use to secure biodiversity and water quality benefits).  Conner et 

al. [1995] have emphasized that a narrow focus on a single amenity can also lead to cost-

inefficient interventions. 

In the context of targeting habitat protection interventions, Prendergast et al. [1999] noted 

that field practitioners and policymakers rarely use the tools and results that have been developed 

in the academic literature.  In large part, the tools and results are not adopted because they are 

not developed and applied with the objectives and approaches of practitioners and policymakers 

in mind.  In the empirical application of this paper, we use data routinely available to decision-

makers and consider explicitly the actual approaches used by decision-makers in the field.  We 

also approach the problem at the geographic scale at which decisions are being made; i.e., 

individual parcels rather than large administrative districts or GIS polygons on the landscape. 

In the next section, the conventional approach to targeting conservation investments is 

introduced.  In section III, the alternative approach to targeting conservation investments using 

distance functions is presented.  In section IV, the empirical case study is described and in 

section V, the results from this case are presented.  In section VI, other aspects of the distance 

function approach are explored. 

 
 
II.  Conventional Approach to Targeting Conservation Investments 

 In the presentation of the conventional approach to targeting land conservation 

investments, we use the following notation: 

pi =   Share of parcel i under conservation contract (pi = 1 if parcel is fully contracted) 

ei =  Environmental benefit from parcel i (a scalar; often an index value or a measure of a key 

objective, such as reduction in tons of sediment) 
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ci =  Contract cost for parcel i (private opportunity cost of conservation) 

ti =   Transaction costs for a contract on parcel i (e.g., legal fees, monitoring) 

D =   Contracting agency’s budget  

As in previous analyses, we make several assumptions.  First, each parcel can either 

generate net returns of ci to the private landowner or environmental benefits of ei to the 

contracting agent (and the citizens that it represents).  Second, the unit of analysis is the parcel, 

and each parcel is assumed to be homogenous (heterogeneous parcels can be divided into 

homogenous sub-parcels, each with different values of e and c).  

To identify the cost-efficient land portfolio that gives maximum environmental benefits 

per dollar expended, the decision-maker wants to solve 

..
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This approach is the same as that used by Babcock et al. [1996; in Babcock et al., ei is either a 

measure of a single biophysical attribute or an index] and is similar in spirit to the approaches 

used in targeting investments for species conservation (the latter are often modeled as maximum 

coverage problems or as the maximization of a diversity measure subject to a budget constraint).  

Other characteristics of this approach are discussed in the appendix. 

The degree to which a contracting agent can identify the “true” cost-efficient land 

portfolio via expressions [1]-[3] depends on the degree to which environmental benefits, ei, are 
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measured accurately.1  Many conservation initiatives have multiple objectives.  For example, in 

the empirical example of this paper, the City of Syracuse wishes to reduce sediment, chemical, 

pathogen and nutrient loading into its water supply.  Even if the City were able to measure the 

way in which a conservation contract might decrease each of the pollutants on a particular parcel, 

the way in which the loadings of these pollutants combine to affect the main objective, drinking 

water quality, is unknown.  As in the Syracuse case, field-level practitioners are generally not 

able to estimate pollutant loadings, much less how they interact to affect water quality.  In most 

cases, decision-makers know only the biophysical attributes that contribute to the conservation 

objective. 

In the Syracuse case, for example, a panel of scientists and policymakers has agreed that 

five biophysical attributes of riparian land are important in contributing to their policy objective, 

but the way in which the attributes combine to affect water quality is unknown (see Section IV).  

In order to estimate the benefits from an individual parcel, Syracuse policymakers have done 

what many conservation groups and academic scientists have done:  they created a benefit index 

for each parcel based on its biophysical attributes.  Such indices are most often constructed from 

weighted linear functions of the attributes or by assignment of points to each parcel based on its 

biophysical attributes or land uses.  Scoring methods like these are quite common in the 

academic literature [e.g., Voogd 1983; Lemunyon and Gilbert 1993], in federal agency 

guidelines [e.g., USFWS 1982; Terrell et al. 1982; Allen 1983; McMahon 1983; Allen and 

Hoffman 1984; FDEP 1999], in water quality protection initiatives [e.g., Smith et al. 1995; 

Rowles and Sitlinger 1999; MDC 1999; FDEP 2000], and in the multi-billion dollar conservation 

                                                 
1 We assume that contract cost uncertainty will eventually be resolved through negotiation or an auction-type 
mechanism.  In circumstances without a mechanism for all landowners to reveal simultaneously their willingness-to-
accept a contract, uncertainty over costs can make the ex ante targeting decisions difficult (i.e., with whom does one 
start negotiating?).  We will argue that the distance function-based targeting approach offers advantages in such 
circumstances. 
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efforts of the U.S. Conservation Reserve Program [Feather et al. 1998], land trusts [e.g., The 

Nature Conservancy; Master 1991], international habitat protection groups [e.g., World Wildlife 

Fund; Olson et al. 2000], national wildlife protection initiatives [e.g., Partners in Flight; Carter et 

al. 1999], and farmland protection initiatives (e.g., American Farmland Trust). 

Scoring functions, however, are highly subjective and may not capture decision-maker 

preferences very well.  Psychological experiments and simple everyday experience indicate that 

identification of criteria weights is complicated even for experts [e.g., Narasimhan and Vickery 

1988; Borcherding et al. 1993] and that simple linear preference functions can fail to capture 

actual decision-maker preferences [Keeney and Raiffa 1976].  As will be shown in the empirical 

example, there are often many plausible scoring functions for approximating environmental 

amenities.  Uncertainty about the “true” value of ei can make it difficult to choose the optimal 

land portfolio.  In the next section, we draw from the literature in production efficiency analysis 

to develop an alternative cost-efficient targeting approach that does not depend on a parametric 

specification of an environmental amenity function. 

 
 
III.  Distance-Function Approach to Targeting Conservation Investments 

 In many conservation initiatives, the biophysical attributes that are important in 

contributing to the desired environmental amenity are largely agreed upon by practitioners and 

advising scientists.  However, the way in which these attributes (e.g., riparian exposure, drainage 

area) combine to produce the desired objectives (e.g., reduced pathogen loading) is not simply a 

source of disagreement, but rather completely unknown in many circumstances.  Instead of 

trying to approximate the environmental amenities from each parcel through a specific functional 

form, it may be more appropriate to target parcels based on their efficiency in “producing” the 
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desired biophysical attributes.  Such an approach is particularly reasonable in a conservation 

contracting initiative for water quality given that biophysical attributes have been shown to 

characterize well the underlying hydrological and ecological features of aquatic ecosystems 

[Jensen et al. 2001]. 

In any conservation contracting initiative, one wants to assess the desirability of 

contracting one parcel relative to contracting the other available parcels.  To compare parcels, 

one can treat each parcel as a production unit that converts input -- the costs of conservation 

contracting -- into multiple joint outputs -- the parcel’s biophysical attributes that contribute to 

the conservation goal.  In such an approach to targeting, one is only concerned with the ability of 

a parcel to obtain maximal joint output given the cost of contracting for that parcel (one assumes 

that more of the desirable attributes is always better than less).2 

The productivity of a parcel in producing the desired biophysical attributes given its 

contracting cost can be measured by an input distance function.  A land attribute “production 

frontier” is estimated through nonparametric programming methods that place a linear, faceted 

conical hull (convex cone) over the observed land parcels in the input-output space, such that all 

parcels either lie on the surface of the cone or beneath it.  Parcels can be ranked on relative cost-

efficiency by considering a minimal reduction in the contract cost that, given the vector of parcel 

attributes, projects the parcel onto the efficient frontier.  The piecewise-linear hull approach to 

frontier estimation was proposed in the 1950s by Farrell [1957], but did not become popular until 

programming methods were developed for multiple output-input cases [Charnes et al. 1978]. 

In the general case of K inputs and M outputs, we denote inputs by the non-negative 

vector x = (x1,x2,…,xK)∈  and outputs by the non-negative vector (yK
+ℜ 1,y2,…,yM)∈ .  In the M

+ℜ

                                                 
2 If more information is known about the relative importance of each characteristic, that information can also be 
incorporated.  See Section VI. 
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case of conservation contracting, inputs are the costs of conservation contracting (e.g., the 

contract payment, the monitoring cost),3 and outputs are the desirable biophysical attributes 

secured by the contract for conservation (e.g., drainage area).  We denote the input distance 

function as 

1)}),(:(min{}),(:max{),( −∈=∈= SyxSyxyxDI ρρρρ ,      [4] 

where S is the “land attribute technology” that describes the transformation of contracting inputs 

into desirable land attributes; i.e., .  S is assumed to be a convex, 

closed set and inputs and outputs are freely disposable (outputs are disposable in the sense that 

partial parcel contracting is allowed).  

}:),{( yproducecanxyxS =

The distance measure ρ is the factor by which all input quantities could be decreased 

while still remaining within the feasible input set for the given output level.  The distance 

measure is (i) greater than or equal to one, (ii) equal to one if and only if a parcel belongs to the 

frontier, and (iii) non-decreasing in x and increasing in y.  Shephard [1970] showed that the input 

distance function is the dual of the cost function. 

The distance function defined by [4] can be estimated by mathematical programming 

methods.  There are a variety of ways to specify the programming model, but all seek to use a 

subset of the N parcels to determine parts of the production frontier surface (normally 

constructed as piecewise linear).4  To be efficient, a parcel vector must lie on this surface.  

Parcels not on the surface are termed inefficient and the input distance metric provides a 

                                                 
3 If all costs are in dollar terms, the input vector has only one element.  One can, however, define the vector more 
broadly to include costs about which a contracting agency is concerned but which cannot be easily converted into a 
dollar figure; for example, lost forestry jobs when old growth forest is protected from logging. 
4  In the operations research literature, methods that use Free Disposal Hull, Convex Hull, Stairwise Hull, and 
Convex Cone approaches often go under the name “Data Envelopment Analysis.”  The term was coined by Charnes 
et al. (1978), although others had proposed the method earlier (see Coelli et al. 1998 for references). 
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summary measure of the inefficiency, which, in the conservation contracting case, is the 

reduction in the contract cost required to put the parcel on the efficient frontier. 

 We use a piecewise-linear conical hull approach to estimate the distance function:   

st

yxDI θ
λθ ,

1 min)),(( =−

         [5] 

 0≥+− λYyi          [6] 
 0≥− λθ Xxi          [7] 

  0≥λ           [8] 
 
where θ is a scalar, λ is an Nx1 vector of constants, X is a KxN matrix of contract costs, and Y is 

an MxN matrix of biophysical attributes (or amenities, in the multiple-amenity context) .  The 

value of θ obtained will be the efficiency score for the i-th parcel and corresponds to the inverse 

of the distance measure in [4].  By minimizing θ, one achieves maximal movement toward the 

frontier through a proportional reduction of inputs (i.e., radial contraction of the input vector).  

The contraction of the input vector, xi, produces the projected point (Xλ,Yλ) on the frontier 

surface.  This projected point is a linear combination of the observed data points.  The constraints 

[6]-[8] ensure that the projected point cannot lie outside of the feasible production set.  By 

construction, θ will be less than or equal to one, with a value of one indicating that the parcel is 

on the frontier.  The program is solved N times, once for each parcel, thereby obtaining a value 

of θ for each parcel.5 

The way in which the distance function ranks land parcels on the basis of productivity is 

illustrated in Figure 1, which depicts the simple case of one desired biophysical attribute.  In the 

figure, the boundary of S is represented by the ray emanating from the origin and passing 

                                                 
5 Most recent nonparametric programming applications that estimate production frontiers add an additional 
convexity constraint, 11 =′λN , in order to allow for variable returns to scale (Coelli et al. 1998: 150).  In the 
appendix, we explain why this convex hull approach is not appropriate for the case of targeting conservation 
investments.   
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through the parcel with coordinates (1, 2).  The parcel at (1, 2) yields a distance measure of θ = 1 

and is classified as “efficient.”  This parcel would be the most desirable for conservation 

contracting.  The remaining parcels, which are not on the frontier, are classified as “inefficient” 

and yield a distance measure that indicates the minimal reduction in contract cost required to 

project the parcel onto the frontier.  For example, the parcel with coordinates (4, 3.6) can be 

projected onto the frontier if its contract cost were reduced by a factor of (1-θ) = (1- 0.45) = 0.55, 

or $1.62. The projected point is therefore (1.98, 3.6), and θ = 0.45 indicates that the parcel is 

“45% of the way to the frontier.”   Parcels are ranked for acquisition from the highest value of θ 

to the lowest. 

Distance Functions and Parcel Rankings
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Figure 1.   Distance Functions and Parcel Rankings 

 

To understand how parcel acquisition priorities based on expressions [1]-[3] and [5]-[8] 

differ when ei is an index constructed from a weighted linear equation of attributes, consider the 

case of one input, acquisition cost in dollars, and two biophysical attributes, X and Y.  In order to 
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present this case in two dimensions, we normalize the attributes to “attribute per dollar spent on 

acquisition.”  Figure 2 presents four parcels in the attribute space.  The straight line through 

parcel A represents one possible weighting scheme in the linear scoring equation.  With this 

scoring equation, parcel A is chosen first, parcel B second (the line is simply shifted down until 

it intersects with another parcel), parcel D third and parcel C fourth.  Using (output) distance 

functions, a productivity frontier would be estimated (stylized by curved line) and parcels would 

be ranked depending on their distance from the frontier.  In this case, parcel A and D would be 

considered equally as valuable, parcel B would be ranked third, and parcel C would be ranked 

fourth (the distance-function approach essentially allows the weights on each attribute to change 

across parcels, thereby allowing each parcel to be seen in its best light). 
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Figure 2.  Weighted Linear Scoring Equations and Distance Functions Rankings 
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Unlike in the application of nonparametric programming and distance functions to the 

analysis of firm efficiency, the standard assumptions implied by the use of an input distance 

function and a nonparametric approach to estimating the frontier are not a problem in the 

conservation targeting context.  First, the land attribute production technology characterized by 

the distance function is truly a joint production technology.  Second, using a radial distance 

metric in input space, rather than a radial output metric or non-radial metric,6 makes perfect 

sense in the context of conservation contracting because land attributes are not changeable; the 

only discretionary variable is the amount of money paid by the contracting agency.7  By using an 

input-oriented metric, we also obtain an efficiency measure that is useful to a conservation agent 

that must negotiate with landowners:  the distance function allows negotiators to evaluate the 

change in a parcel’s relative ranking if the estimated contract cost changes during site visits and 

negotiation (see Section VI).  A radial metric also has the desirable property that the efficiency 

measure is units invariant.  In the next section, we describe the case study in which alternative 

targeting approaches are empirically evaluated. 

 
 
IV.  Case Study:  Lake Skaneateles Watershed Program 

The use of conservation contracts to achieve water quality objectives is becoming an 

increasingly popular policy tool [Johnson et al. 2001].  For example, the New York City 

Watershed Management Plan will spend $250 million on conservation contracting with private 

landowners in the Catskill-Delaware watershed over the next ten years to protect the City’s water 
                                                 
6 Using a conical hull approach, the estimated efficiency measures are the same under the radial output and input 
orientation, but their interpretation is different. 
7  If the landowner can change land attributes (e.g., reforestation), one could construct a different production unit 
(i.e., different output and input vectors) for each intervention and compare each parcel-intervention combination to 
every other parcel-intervention combination.  With the exception of the case in which a single parcel may define the 
frontier under more than one of the available interventions, one simply ranks parcels under each parcel’s most 
productive intervention.  In the case of one parcel defining the frontier under more than one intervention, one would 
need to pick the frontier-defining parcel’s most desirable state using other criteria. 

 12



supply and maintain its filtration waiver from the Environmental Protection Agency [NRC 2000: 

213-239].  Examples of other contracting initiatives for water quality include North Carolina’s 

$30 million Clean Water Management Trust Fund, Massachusetts’s $80 million dollar effort to 

acquire riparian land to protect Boston’s Wachusett Reservoir, and Costa Rica’s $16 million per 

year effort to secure conservation contracts in, among other areas, the watersheds of municipal 

water supplies and hydroelectric dams. 

In particular, scientists and policymakers have identified the establishment of vegetated 

riparian zones that protect surface waters from inputs of nutrients, pesticides, sediment and 

pathogens as an important policy for improving surface water quality [Tilman et al. 2001].  One 

such riparian buffer acquisition initiative is currently underway in upstate New York.  The City 

of Syracuse (population 163,860) obtains its drinking water from Lake Skaneateles, which is 

outside of the City’s regulatory jurisdiction.  The 16 mile-long lake has a 60 square mile 

watershed that covers three counties, seven townships and one village.  The population of the 

watershed is about 5000 residents, concentrated largely in the northern half of the lake where the 

City’s intakes pipes are located.  Land use is mainly a mix of forest (40 percent) and agricultural 

land (48 percent), on which cropping and dairy farming are most common. 

The water from the lake is of exceptionally high quality and the City, using only 

disinfection by chlorination, meets drinking water standards without coagulation or filtration.8  In 

recent years, however, the City has come under increasing pressure to consider filtration in order 

to satisfy the provisions of the Environmental Protection Agency’s (EPA) Surface Water 

Treatment Rule.  In 1994, the City signed a Memorandum of Agreement (MOA) with the New 

York State Department of Health that allows the City to avoid filtering water from the lake.  The 

                                                 
8 An estimated 20-65 million Americans drink unfiltered surface water [DeZyane 1990], including citizens in the 
cities of New York, Boston and San Francisco. 
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MOA requires that the City commit to a long-term watershed management program to reduce 

pathogen, chemical, nutrient and sediment loading into the lake.  An important part of the 

management program is a conservation easement acquisition program through which up to $5 

million will be spent over the next seven years (2001-2008) to secure easements on privately 

owned riparian parcels.  By securing easements on riparian buffers in the watershed, the City 

hopes to avoid, or delay, the estimated $60-$70 million cost of a new filtration plant.  The City 

wants to allocate its limited budget across the watershed in a way that will have the greatest 

effect on maintaining and improving water quality in the lake [Meyers et al. 1998].   

In the analysis, we focus on prioritizing the acquisition of easements from an available 

population of 202 riparian parcels in the upper watershed of Lake Skaneateles (see Figure 3).  

Biophysical and economic data on these parcels were obtained from the Geographic Information 

Systems database of the City of Syracuse’s Department of Water.  The southwestern end of the 

lake is protected public land and is thus excluded from the analysis.  Data on parcels in the 

southeastern end of the lake were not available at the time of analysis, but because these parcels 

are far from the City’s intake pipes, excluding them will have only minor effects on the final 

results. 

 

Benefit Data 

The City wishes to reduce sediment, chemical, pathogen and nutrient loading into its 

water supply.  Sophisticated hydrological models, however, are not available for the Lake 

Skaneateles watershed.  To measure the contribution of each parcel to the City’s water quality 

objectives, the City’s Department of Water convened a scientific panel to help it develop a 

parcel-scoring system based on known land attributes in the watershed [Myers et al. 1998].  The 
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panel developed two potential systems: an interval-scale scoring equation and a ratio-scale 

scoring equation.  The equations, which are described in the appendix, are weighted linear 

functions of biophysical attributes and assign a score to each parcel; the higher the score, the 

higher the benefit from easement acquisition.  

The panel identified five biophysical attributes that affect the City’s water quality 

objectives (see appendix). These five attributes are combined in the linear scoring equations to 

generate a score, ei, for each parcel that can then be used in the optimization approach in 

expressions [1]-[3].  We refer to this optimization approach as the E-max approach (for 

“environmental score maximization”).  In the distance-function approach, which we will refer to 

as the Nonparam approach (for “nonparametric”), the five attributes are treated as outputs and 

cost (easement and transaction) is treated as a single input.  We also derive easement portfolios 

under another parcel-scoring method for water quality objectives: the Parcel-Pollutant-Weighting 

(PPW) equation [Azzaino et al. 2002], which is described in the appendix.   

 

Cost Data 

 A regional appraising company estimated that easements around Lake Skaneateles would 

cost between 40 percent and 60 percent of the assessed land value of a parcel [Gardner 2000].  In 

the analysis, we use 50 percent.  A change in the percentage affects the number of parcels that 

can be acquired for a given budget, not the order in which the parcels are acquired.  There were 

not enough observations on sales of properties with easements in the region to estimate a hedonic 

equation of easement costs.  Based on transaction cost information from the local Finger Lakes 

Land Trust, we also assume that there is a transaction cost of $5000/easement. 
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V.  Results 

 In this section, we examine two aspects of the performance of the distance-function 

approach:  (1) the ways in which the NonParam portfolio differs from the portfolios derived 

using the E-max approach under the three parcel-scoring methods; and (2) the total parcel scores 

generated by the different portfolios when scored under each scoring method.  The point of this 

latter exercise is to examine the robustness of the NonParam portfolio across plausible benefit 

measures; i.e., what would be lost if a conservation agent used the distance-function approach 

when, in fact, one of the scoring equations was the “true” measure of parcel benefits? 

 We begin with an exploration of the second aspect.  For each scoring method, we 

calculate the total score generated by the parcel portfolio chosen using the conventional targeting 

approach embodied in expressions [1]-[3]; i.e., the E-max approach.  A portfolio score is 

calculated at each of thirty-four budget levels, ranging from $0 to $11.8 million.  The maximum 

budget level is equivalent to enough money to buy riparian easements across the entire upper 

watershed, given the assumed cost of contracting (i.e., ).  We refer to this amount as 

the Total Watershed Cost.  We refer to the sum of all parcel scores under a given scoring method 

as the Total Watershed Benefit (i.e., ).   We also calculate the scores generated by the 

Nonparam portfolio at each budget level.

∑
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Figure 4 illustrates the results for the interval-scale scoring equation.  The x-axis 

represents the budget levels in percent of the Total Watershed Cost.  The y-axis represents the 

environmental benefits achieved as a percentage of the Total Watershed Benefit.  By definition, 

                                                 
9 Eight parcels lie on the frontier and are equally efficient (θ =1), but these parcels cost only $135,050, which is less 
than the first budget level used in the analysis.  Thus there was no need to resort to other criteria to discriminate 
among the efficient parcels. 
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the E-max approach achieves the maximum score per dollar expended, and thus its curve is on 

the outside.  The Nonparam portfolio curve tracks the E-max curve quite closely.  For example, 

with a budget of about $2.7 million, the E-max approach achieves 62% of the total watershed 

benefits, while the NonParam approach achieves 51%.  Under a budget of about $5 million, the 

E-max approach achieves 85% of the total benefits, while the NonParam approach achieves 

84%. 
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Figure 4 – Portfolio Performance (Interval-Scale Scoring Equation) 

 

Rather than present the corresponding figures for each scoring method and then pick out 

specific budget points for illustrative purposes, we consider the performance differences between 

the two approaches by comparing the areas under the curves and above the 45 line in each figure 

[Babcock et al. 1996].  If F(B) is the fraction of the Total Watershed Benefit achieved with the 
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expenditure of B, then one wants to calculate ∫ −=
1

0 2
1)( dBBFA .  For each parcel-scoring 

method, we estimate an area equal to 2A by using trapezoids at each of the thirty-four budget 

intervals.  The greater the difference between 2A under the E-max curve and the equivalent area 

under the NonParam curve, the greater the loss of efficiency if the parametric scoring-equation 

were accurate and one chose the NonParam portfolio rather than the E-max portfolio.  The same 

areas are also calculated for the portfolios derived using the other scoring methods; e.g., the E-

max portfolio selected using the ratio-scale equation is scored with the interval-scale equation 

and compared to the E-max portfolio selected using the interval-scale equation.  This empirical 

exercise is similar to the exercise one might do when comparing parametric and nonparametric 

statistical tests; one wants to know the efficiency loss from choosing a nonparametric or 

erroneous parametric procedure when in fact the underlying population was of a particular 

parametric form. 

The areas under the curves are listed in Table 1.  The data in the table answers the 

question, “What if one were to choose a portfolio based on one benefit measure, when another 

benefit measure is more accurate?”  For example, under the interval-scale scoring equation, the 

area under the E-max curve is 0.55, while the area under the NonParam curve is 0.48, indicating 

that there is about a 12% overall loss in efficiency if one were to choose the NonParam portfolio 

when, in fact, the interval-scale scoring equation is the correct way to measure parcel benefits.  

If, however, the interval-scale scoring equation were the most accurate way to measure benefits 

(Area = 0.55) but one instead chose the portfolio derived under the ratio-scale scoring equation 

(Area = 0.37), there would be a 33% overall loss in efficiency.  By virtue of the distance-function 

approach’s ability to achieve maximal attributes at minimal cost, the cost-efficiency of the 

NonParam portfolio is robust across scoring functions.  In contrast, an E-max portfolio chosen 

 18



under one scoring method may not remain cost-efficient if its parcels’ true values are reflected 

best by another method.10 

 
Table 1 – Portfolio Performances under Alternative Benefit Measures 

Areas Under Portfolio Curves in Benefit-Cost Space  
Portfolio 

Interval-Scale Ratio-Scale PPW 
Interval-Scale 0.55 0.57 0.47 

% E-max 100% 87% 72% 

Ratio-Scale 0.37 0.65 0.48 

% E-max 67% 100% 74% 

PPW 0.35 0.54 0.65 

% E-max 64% 83% 100% 

NonParam 0.48 0.57 0.57 

% E-max 88% 87% 87% 

 
More insights into the relative performances of the different portfolios can be obtained by 

comparing the desirable biophysical attributes secured by each portfolio at a given budget level.  

The City of Syracuse plans to spend $1 - $2.5 million dollars and then evaluate whether further 

easement acquisitions are required.  For purposes of illustration, we choose a budget of $2.5 

million and summarize the portfolio characteristics in Table 2.  The qualitative results are 

maintained over all budget levels (they are more dramatic as the budget approaches zero, and 

less dramatic as the budget approaches $11.8 million).  In each attribute category except one, the 

                                                 
10 The interval-scale portfolio performs well when scored under the ratio-scale equation because (1) the parcel scores 
under each equation are strongly positively correlated (ρ = 0.96), and (2) the ratio-scale equation scores almost one-
quarter of the parcels as zero (no benefit from an easement).  These two factors make it relatively easy for the 
interval-scale portfolio to perform well when scored by the ratio-scale equation. 
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NonParam portfolio dominates the other portfolios.  The parcels in the NonParam portfolio are 

farther on average from the City’s water intake pipes. 

 
 

Table 2 -  Portfolio Characteristics 
 

Budget = $2.5 million 

 Portfolio 
Stream 

Exposure (ft.) 
Total 

Acreage
Acres of 

HSL 

Acres of 
100-ft 
Buffer 

Average Distance 
to Intake Pipes 

(miles) 
Number of 

Parcels 
Interval-
Scale 177,310 3034 1041 398 2.0 112.5
Ratio-Scale 185,509 3309 1134 422 1.8 86.9
PPW 179,741 3920 1092 417 2.0 71.0
NonParam 205,722 4112 1193 470 2.4 84.7
Maximum 
Possible  228,961 4204 1285 513 1.6 (minimum) 

 
 

 The NonParam portfolio performs best in obtaining stream exposure, total acreage and 

acres of hydrologically sensitive land (HSL) and worst in obtaining nearby parcels because 

stream exposure, total acreage and acres of HSL are positively spatially correlated (ρ ∈ [0.55, 

0.72]) and they are negatively correlated with distance to intake.  Furthermore, the spatial 

variabilities of stream exposure, acres and acres of HSL are similar (Gini coefficients of 0.44, 

0.59 and 0.41, respectively), while the spatial variability of distance to intake is higher (Gini 

coefficient of 0.65; i.e., more spatially concentrated).   

Simulations with artificially generated landscapes of two biophysical attributes (see 

appendix for details) suggest that the NonParam portfolio performs best when correlations are 

positive and spatial heterogeneity is low, and that differences in spatial heterogeneity among the 

attributes have a greater effect on performance than do the correlations among attributes.  When 

one attribute has low variability and another has high variability, the effects on distance-function 

performance are intensified:  the distance-function portfolio performs even better in obtaining the 
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low variability attributes and even worse in obtaining the high variability attributes.  Given the 

moderate to high spatial variability of the desired biophysical attributes in the Lake Skaneateles 

watershed (which reduces the performance of the distance-function approach), the robust 

performance of the NonParam portfolio suggests that the distance-function approach to targeting 

conservation investments may perform equally as well in other conservation contexts. 

 
 
VI.  Other Advantages of the Distance-Function Targeting Approach 

Despite decades of research on conservation targeting, mainly by biologists, Prendergast 

et al. observed that practitioners had not adopted sophisticated targeting methods.  They argued 

that practitioners often have a “general antipathy toward what is seen as a prescriptive approach 

to conservation….(p.484).”  The E-max approach in expression [1]-[3] tends to generate results 

that practitioners perceive as too prescriptive, and it does not allow practitioners to easily 

compare parcels relative to one another.  The E-max approach generates rankings in units of 

parcel benefits divided by contract cost, a measure not easily interpreted when the parcel benefit 

is an artificial index.  In contrast, the distance function approach generates rankings in terms of 

contract costs, which are more easily understood.  Moreover, the concept of maximizing artificial 

index numbers is not easily communicated, whereas the concept of trying to obtain as many of 

the desirable biophysical attributes as possible given a fixed budget is clearer.  Furthermore, the 

distance measures allow for more intuitive categorizations of parcels by comparing all parcels to 

a reference set of efficient parcels. 

The distance function approach also has advantages in conservation initiatives like the 

Lake Skaneateles program, in which no mechanism exists to simultaneously elicit all 

landowners’ offer prices for accepting a conservation contract on their land (e.g., a procurement 
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auction).  Conservation practitioners often use two cost discovery methods:  (1) wait for a 

landowner to express interest in a conservation contract and then negotiate over the contract 

price (often the approach used by land trusts); or (2) estimate ex ante the likely willingness-to-

accept of each landowner and then negotiate with landowners sequentially by parcel rank.  Thus, 

practitioners need a way of assessing the implications of new information on contract costs 

without having to continually update and re-solve a programming model.  We argue that the 

output from the distance-function approach is easier for practitioners to adapt in the field and 

will lead to more accurate conservation targeting.  

Assume, for example, that the contracting budget is $2.5 million and Parcel “002-04” is 

in both the E-max interval-scale portfolio and the NonParam portfolio.  A riparian easement on 

the parcel is estimated to cost $12,000.  After negotiating with the landowner, the contracting 

agent discovers that the contract cost is higher than originally estimated.  To consider the effect 

of a contract cost change in the E-max approach, the contracting agent must minimize the 

portfolio contracting cost subject to a portfolio total score target in order to derive the allowable 

increases and decreases in contract cost under which the current basis remains optimal.  The 

minimization suggests that contract cost could increase by as much as $15,985 without a change 

in the optimal basis. 

Using the distance function approach, the contracting agent would know that Parcel 002-

04 is 96% of the way to the frontier (θ = 0.96).  Through simple arithmetic,11 the agent can 

calculate that if the contract cost of Parcel 002-04 were to increase by $15,985, the parcel would 

shift to about 41% of the way to the frontier.  In this case, ten other parcels that formerly were 

not part of the solution would have higher efficiency scores and would be considered preferable 

                                                 
11 Divide the parcel’s target cost of (0.96*$12,000) = $11,520 by the new contract cost of $27,985. 
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to Parcel 002-04.  When more than one contract cost changes, the ease with which relative 

rankings can be updated using the distance function approach is even more important.12 

A nonparametric programming approach to targeting has the advantage that only the 

biophysical attributes of the landscape need be considered.  Knowledge about the way in which 

the attributes combine to produce the desired environmental amenities is not needed.  A priori 

knowledge about the relative importance of the different attributes in contributing to the 

environmental objective can, however, be incorporated into the nonparametric approach through 

constraints on the multipliers in [5]-[8], which are currently only restricted to be non-negative.  

Restrictions on the multipliers will alter the surface of the frontier and thus alter the estimated 

efficiencies of the parcels.  Proposed techniques for implementing multiplier restrictions include 

placing upper and lower bounds on individual multipliers [Dyson and Thanassoulis 1988; Roll et 

al. 1991]; imposing bounds on the ratio of multipliers; appending multiplier inequalities [Wong 

and Beasley 1990]; and requiring multipliers to belong to given closed cones [Charnes et al. 

1989, 1990].   

 
 
VII.  Conclusion 

Policymakers and conservation practitioners throughout the world seek flexible tools to 

integrate spatially heterogeneous biophysical and economic data into cost-efficient conservation 

plans.  In this paper, we recognize the difficulty associated in estimating the environmental 

amenities provided by a unit of land.  We argue that there is often greater certainty about which 

                                                 
12 This statement assumes that no parcel’s price decreases enough to greatly transform the surface of the frontier.  
Such a transformation is most likely to occur with changes in contract costs for parcels found close to the frontier 
and near the area of increasing returns to scale on a convex hull over the data.  It is in this area of the attribute-cost 
space that small absolute changes in contract costs can have a large impact on a parcel’s relative position in 
attribute-cost space.  The parcels in such areas can easily be identified ex ante through a modification of the original 
programming model. 
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biophysical land attributes contribute to supplying an environmental amenity than there is about 

the way in which these attributes combine to produce the amenity.  Based on this observation, we 

introduce an alternative, nonparametric distance function-based method for incorporating 

biophysical and economic data to improve the targeting of conservation investments. 

We empirically compare different conservation targeting approaches by using GIS data 

from a riparian easement contracting initiative in upstate New York.  In this empirical 

application, we use data available to decision-makers, explicitly consider actual approaches used 

by decision-makers, and approach the problem at the geographic scale at which decisions are 

being made.  We demonstrate that in the absence of a widely agreed upon specification for an 

environmental amenity function, policymakers may do well to consider a non-parametric 

distance function-based approach to conservation targeting.  The land portfolios generated by the 

distance-function application have many desirable properties, including intuitive appeal, robust 

performance across plausible parametric amenity measures, and the generation of ranking 

measures that can be easily used and manipulated by field practitioners. 

Although we apply the distance-function approach to the case of riparian land contracting 

for water quality objectives, the approach can be used for any conservation initiative.  For 

example, conservation practitioners interested in habitat conservation may identify species 

diversity, habitat size, genetic dissimilarity indices of critical species, and distance from 

protected areas as key habitat attributes.   The way in which these attributes combine to produce 

“habitat quality” is unknown.  A reasonable conservation approach would thus be to maximize 

the joint output of these attributes subject to the cost of securing them.13  Even in cases in which 

specific functional forms are known for key environmental objectives (e.g., a sediment loading 

                                                 
13  Issues associated with substitutability and complementarity among parcels, however, may be complicated to 
incorporate into the distance-function approach without specifying all of the possible combinations.  More research 
on this aspect of conservation investment targeting is needed. 
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model), the distance-function approach would be useful if there were more than one 

environmental objective that policymakers wanted to achieve (e.g., reduce pathogen, sediment 

and nutrient loading).  A distance function approach also allows conservation agents to consider 

costs that may not be convertible into monetary units (e.g., undesirable changes in rural 

livelihood patterns).   

Conservation targeting based on distance functions does not require decision-makers to 

reduce multiple biological dimensions into a single value.  The approach therefore has a strong 

potential to make attempts to improve the cost-efficiency of conservation investments more 

attractive to decision-makers. Our analysis only describes a fraction of the full potential of the 

approach.  We believe further analysis and application of distance-function targeting approaches 

is warranted and will lead to more effective conservation policy design. 
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Appendix 

 A.1  Interval-Scale Scoring Equation 

The interval-scale scoring equation developed by the City of Syracuse is: 

Environmental Benefit Score (EBS) = .2 Acreage + .2 Priority Zone  

+ .25 (Distance to Intake)-1 + .25 Acres of Hydrologically Sensitive Land  

+ .1 Stream Length 
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The attribute Distance to Intake measures the planametric distance from the geometric center of 

the parcel to a point exactly midway between the City’s two water intake pipes.  The closer to 

the pipes, the more desirable is the parcel of land. Priority Zone is a categorical variable, 

converted to a numeric scale, that captures the development potential and land use intensity of 

the zone in which a parcel is found.  Stream Length is the length of the stream frontage 

(exposure) in each parcel, and Acres of Hydrologically Sensitive Land includes hydric soils, 

steeply sloped soil, wetlands and frequently flooded soils.  Although acres of 100-foot wide 

riparian buffer are considered important to reducing pollutant loading, the area that is drained 

(Acreage) and the amount of exposure a parcel has to surface water (Stream Feet) are more 

important and are highly correlated with acres of buffer. The scientific panel therefore did not 

include acres of riparian buffer in the parcel scoring equation, but the attribute is important to the 

City’s objectives. 

The higher the parcel score, the more desirable the parcel is for water quality protection.  

In order that parcel attributes can be meaningfully compared to each other and that the units of 

measurement do not affect the scores, each attribute is scaled so that the least-favorable observed 

value generates a score of zero and the most-favorable observed value generates a score of one.  

For example, the smallest parcel in the data set was 0.17 acres, and thus this parcel received a 

standardized score of zero for the acreage attribute.  The largest parcel was 136 acres and thus 

received a standardized score of one for the acreage attribute.  Intermediate values receive a 

standardized score based on the relative position between the high and low values: 

 
ii

iij
ij MINMAX

MINOBS
ScoreScaleInterval

−
−

=−        

The standardized score of attribute i for parcel j, called an Interval-Scale Score, derives from 

subtracting the minimum observed value for the attribute from the observed value and dividing 

this number by the difference between the maximum and minimum values for attribute i.  

 

A.2  Ratio-Scale Scoring Equation 

The ratio-scale scoring equation uses the attributes found in the interval-scale equation, but 

its form and normalization differs:   

Environmental Benefit Score (EBS) = 0.27 Acreage + .27 Priority Zone  

- 0.27 Distance to Intake  + .33 Acres of Hydrologically Sensitive Land   
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+  0.13 Stream Length         

Excluding the Distance to Intake weight, all the weights sum to one.  Each parcel is then 

penalized for its distance from the intake (represented by a negative coefficient on Distance to 

Intake).  All parcel scores are assumed to be greater than or equal to zero (a parcel that generates 

a negative score from the ratio-scale scoring function is scored as zero).  Each attribute is scaled 

so that the most-favorable observed value generates a score of one and every other parcel is 

compared to that parcel; i.e., for the jth parcel and the ith attribute, 

 
i

ij
ij MAX

OBS
ScoreScaleRatio =−   

 

A.3  Parcel-Pollutant-Weighting Model 

The Parcel-Pollutant-Weighting Model is based on the approaches used by the New York 

State Department of Health [1999] and Hermans [1999] and is developed and explained in 

Azzaino et al. [2002].  We summarize the model briefly.  Each parcel is assigned a land-use 

classification based on GIS data collected from New York’s Real Property database.  Based on 

this classification, the biophysical attributes of the land parcel (drainage area and distance to 

intake) and the results of a published water quality study [New York State Department of Health 

1999], each parcel’s potential loading of phosphorus and pathogens is assessed qualitatively. 

This qualitative assessment is then assigned an index number ranging from 10, for a qualitative 

assessment of “high,” to 3.33, for a qualitative assessment of “low.” If a parcel is acquired for 

the riparian buffer easement, a percentage reduction in pollutant loading is assumed, based on the 

current qualitative assessment and data in Hermans [1999: 136].  Equal weights are used on 

reductions in pathogens and phosphorous loadings. 

 

A.4  Easement Acquisition Problem – additional characteristics 

 The maximization problem is 
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   [A1] 

This formulation is equivalent to ranking parcels from highest to lowest based on their e/c ratio 

and accepting contracts until the budget is exhausted.  One can interpret λ* as a shadow value at 

the optimum denoting the increase in environmental quality associated with an increase in the 
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budget constraint.  When one allows partial parcel contracting, one generates a positive shadow 

value for all budgets less than the total contract value of the available parcels. 

 Complementary slackness requires that: 
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In other words, if one unit in parcel i is valuable enough to be acquired, every other unit in parcel 

i is good enough to be contracted (by the parcel homogeneity assumption).  One parcel, pi
*λ, may 

end up with a partial contract because budget constraints prevent contracting on every acre in the 

parcel. The shadow value, λ* > 0, is the threshold ratio of environmental benefits to contract cost 

(eλi/cλi) that indicates which parcels are contracted and which are not.  One also knows that 

0
*

<
∂
∂

D
λ  and that 1/λ* is the unit price of the environmental amenity (i.e., a unit of environmental 

benefit score) if there existed a uniform-price market for water quality in the Lake Skaneateles 

watershed.  In such a market, the City of Syracuse would pay (1/λ*) Σ p1e1 for its contracted land 

portfolio. 

 

A.5 Conical Hull versus Convex Hull Programming Approaches 

The convex hull approach allows analysts to discriminate between technical inefficiency 

and scale inefficiency by allowing supporting hyperplanes to pass through any point on the axes, 

whereas the conical hull approach in [5]-[8] forces all hyperplanes to pass through the origin.  A 

conical hull approach is equivalent to assuming that the production technology exhibits constant 

returns to scale.  Clearly each parcel in the analysis is a unique production unit that could not be 

replicated, as in the typical understanding of constant returns to scale.  Trying to make 

comparisons between firms and land parcels, however, is misleading.  We are interested in the 

most productive parcels.  Since the conical hull frontier envelops a larger feasible region than the 

convex hull frontier, parcels on the conical hull frontier are more productive than parcels found 

only on the convex hull frontier.  If a convex hull approach to estimating the frontier were used, 
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inefficient parcels are only compared to parcels of similar size.  This inherent characteristic of 

the piecewise linear, variable returns-to-scale convex hull approach can lead to situations in 

which parcels that are less productive are ranked higher for targeting than more productive 

parcels.   In the context of conservation targeting, the parcels closest to the estimate frontier must 

be the most productive parcels; otherwise one could generate a land portfolio that could be 

dominated by convex combinations of less efficient parcels (thus contradicting the original 

ranking). 

 

A.6 Simulations with Artificial Landscapes 

We assume that there are two biophysical attributes of interest, A and S.  Let A denote 

the per-parcel acreage measure, A0 ≤ A ≤ A1, and S denote the per-parcel stream exposure 

measure, S0 ≤ S ≤ S1.  Denote the joint density function of A and S that is available for 

contracting as f(A,S).  This joint density function can be used to measure the share of land on a 

given landscape with certain attributes.  For example, the share of land with AM ≤ A ≤ AZ is 

given by .  The per-parcel cost is C, C∫ ∫
1

0

),(
S

S

A

A

Z

M

dSdASAf 0 ≤ C ≤ C1.  In the simulation, we focus 

on the characteristics of f(A,S); namely the spatial correlation and concentration of A and S 

across the landscape.  We generate artificial data sets to use in numerical analyses.  We specify 

marginal density functions for A and S and allow the variability of each to vary.  We use a 

standard beta distribution with parameters p and q for the marginal distributions.  The beta 

distribution allows one to vary the relative variability of the marginal distributions:  high p and q 

correspond to lower spatial variability; p > q skews the distribution and reduces the relative 

variability.  Using a technique developed by Johnson and Tenenbein [1981] and applied by 

Babcock et al. [1997], we add correlation, ρ, to the marginal distributions and draw correlated A 

and S observations from the marginal distributions.  We then define different combinations of p, 

q and ρ, where each combination represents a landscape with a given f(A,S).  We then generate 

2,000 random correlated draws for each combination.  The distribution of costs per parcel, which 

is held constant across all landscapes, has a low-variance density (p=q=50) and mild positive 

correlation with A and S in all landscapes.  As in Section V, the distance-function (Nonparam) 

portfolio is derived under thirty-four budget levels.  The performance of the distance-function 

portfolio over all budget levels is then compared to the performance of the portfolio that 
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maximizes the acquisition of that attribute (i.e., an analysis similar to that presented in Table 1).  

Thus, for example, on a landscape where A and S are positively correlated (ρ = 0.3) and the 

variability of A on the landscape is low (p=q=50) and the variability of S is high (p=q=0.50), the 

distance-function portfolio is 99.78% as efficient in obtaining the attribute A as the portfolio 

selected to maximize the acquisition of A. 

 

Table A1 – Performance of Distance-function Portfolio as a Percentage of the Maximum 
Total Amount of A and S Available 
 

Landscape A S 
ρ = +0.3_pA=50_qA=50_pS=0.5_qS=0.5 99.78% 78.90% 
ρ =  0_pA=50_qA=50_pS=0.5_qS=0.5 99.60% 77.58% 
ρ =  0_pA=50_qA=50_pS=50_qS=50 99.58% 99.20% 
ρ = +0.3_pA=50_qA=50_pS=50_qS=50 99.57% 99.57% 
ρ = +0.3_pA=50_qA=50_pS=50_qS=11.9733 99.39% 99.86% 
ρ = -0.3_pA=50_qA=50_pS=11.9733_qS=50 99.34% 96.40% 
ρ = -0.3_pA=50_qA=50_pS=50_qS=11.9733 99.32% 99.64% 
ρ = +0.3_pA=50_qA=50_pS=11.9733_qS=50 99.03% 98.79% 
ρ = -0.3_pA=50_qA=50_pS=50_qS=50 98.86% 99.67% 
ρ = -0.3_pA=50_qA=50_pS=0.5_qS=0.5 98.52% 83.09% 
ρ = +0.3_pA=0.5_qA=0.5_pS=0.232051_qS=0.5 93.44% 81.77% 
ρ = +0.3_pA=0.5_qA=0.5_pS=0.5_qS=0.5 88.76% 90.48% 
ρ =  0_pA=0.5_qA=0.5_pS=0.5_qS=0.5 87.09% 84.72% 
ρ = +0.3_pA=0.5_qA=0.5_pS=0.5_qS=0.232051 83.36% 94.92% 
ρ = -0.3_pA=0.5_qA=0.5_pS=0.5_qS=0.5 82.73% 82.19% 
ρ = -0.3_pA=0.5_qA=0.5_pS=0.5_qS=0.232051 78.43% 89.81% 
ρ = +0.3_pA=0.5_qA=0.5_pS=50_qS=50 77.61% 99.62% 
ρ =  0_pA=0.5_qA=0.5_pS=50_qS=50 76.77% 99.68% 
ρ = -0.3_pA=0.5_qA=0.5_pS=50_qS=50 76.55% 99.46% 
 


