261 research outputs found
The Harris-Luck criterion for random lattices
The Harris-Luck criterion judges the relevance of (potentially) spatially
correlated, quenched disorder induced by, e.g., random bonds, randomly diluted
sites or a quasi-periodicity of the lattice, for altering the critical behavior
of a coupled matter system. We investigate the applicability of this type of
criterion to the case of spin variables coupled to random lattices. Their
aptitude to alter critical behavior depends on the degree of spatial
correlations present, which is quantified by a wandering exponent. We consider
the cases of Poissonian random graphs resulting from the Voronoi-Delaunay
construction and of planar, ``fat'' Feynman diagrams and precisely
determine their wandering exponents. The resulting predictions are compared to
various exact and numerical results for the Potts model coupled to these
quenched ensembles of random graphs.Comment: 13 pages, 9 figures, 2 tables, REVTeX 4. Version as published, one
figure added for clarification, minor re-wordings and typo cleanu
Spin relaxation in (110) and (001) InAs/GaSb superlattices
We report an enhancement of the electron spin relaxation time (T1) in a (110)
InAs/GaSb superlattice by more than an order of magnitude (25 times) relative
to the corresponding (001) structure. The spin dynamics were measured using
polarization sensitive pump probe techniques and a mid-infrared, subpicosecond
PPLN OPO. Longer T1 times in (110) superlattices are attributed to the
suppression of the native interface asymmetry and bulk inversion asymmetry
contributions to the precessional D'yakonov Perel spin relaxation process.
Calculations using a nonperturbative 14-band nanostructure model give good
agreement with experiment and indicate that possible structural inversion
asymmetry contributions to T1 associated with compositional mixing at the
superlattice interfaces may limit the observed spin lifetime in (110)
superlattices. Our findings have implications for potential spintronics
applications using InAs/GaSb heterostructures.Comment: 4 pages, 2 figure
61MO Biomarker analysis of men with enzalutamide (enza)-resistant metastatic castration-resistant prostate cancer (mCRPC) treated with pembrolizumab (pembro) + enza in KEYNOTE-199
Background: In KEYNOTE-199 (NCT02787005), pembro + enza had durable antitumor activity in enza-refractory mCRPC. We evaluated the association between prespecified biomarkers and clinical outcomes.
Methods: Cohorts 4 (C4; RECIST-measurable disease) and 5 (C5; nonmeasurable, bone-predominant disease) enrolled men with chemotherapy-naive mCRPC, irrespective of PD-L1 status, that progressed after initial response to enza. We evaluated TMB by whole exome sequencing (n = 64), PD-L1 combined positive score (CPS) by IHC (n = 124), and 18-gene T-cell–inflamed gene expression profile (TcellinfGEP) by NanoString (n = 51). Outcomes were DCR, PFS, PSA response, PSA progression, OS, and ORR per blinded independent review (C4 only). Significance of continuous biomarkers (CPS, TMB, GEP) was prespecified at 0.05 for 1-sided P values from logistic (ORR, DCR, PSA response) and Cox proportional hazard (PFS, OS, PSA progression) regression adjusted for ECOG PS.
Results: In C4, ORR was 10% (5/48) in pts with evaluable TMB data and 12% (10/81) in pts with CPS data. In C4 and C5, 16% (10/64) and 14% (17/124) of pts with TMB and CPS data, respectively, achieved a PSA response. TMB was significantly associated with DCR (P = 0.03) and trended toward an association with PSA response (P = 0.08). TMB (AUROC [95% CI]: 0.68 [0.51-0.86]), but not CPS (0.54 [0.41-0.67]) or TcellinfGEP (0.55 [0.37-0.74]), enriched for PSA response. TMB (P = 0.04), but not CPS (P = 0.57) or TcellinfGEP (P = 0.32), was significantly associated with PSA progression. There was 1 MSI-H pt (per Promega PCR assay); this pt achieved an objective and PSA response and had PFS \u3e6 months. TMB, CPS, and TcellinfGEP were not associated with PFS or OS. There was a low prevalence of TMB ≥175 mut/exome (11%) and TcellinfGEP-high (≥−0.318; 16%).
Conclusions: In this biomarker analysis of KEYNOTE-199 C4-C5, PD-L1 CPS and TcellinfGEP were not significantly associated with clinical outcome. Despite the low prevalence of TMB ≥175 mut/exome, TMB was positively associated with outcomes of pembro + enza in pts with mCRPC. The sample sizes for the exploratory analyses were small, and results should be interpreted with caution
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
The geology and geophysics of Kuiper Belt object (486958) Arrokoth
The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, are primitive objects preserving information about Solar System formation. The New Horizons spacecraft flew past one of these objects, the 36 km long contact binary (486958) Arrokoth (2014 MU69), in January 2019. Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters diameter) within a radius of 8000 km, and has a lightly-cratered smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism
Perspectives in Global Helioseismology, and the Road Ahead
We review the impact of global helioseismology on key questions concerning
the internal structure and dynamics of the Sun, and consider the exciting
challenges the field faces as it enters a fourth decade of science
exploitation. We do so with an eye on the past, looking at the perspectives
global helioseismology offered in its earlier phases, in particular the
mid-to-late 1970s and the 1980s. We look at how modern, higher-quality, longer
datasets coupled with new developments in analysis, have altered, refined, and
changed some of those perspectives, and opened others that were not previously
available for study. We finish by discussing outstanding challenges and
questions for the field.Comment: Invited review; to appear in Solar Physics (24 pages, 6 figures
Meta-analysis of type 2 Diabetes in African Americans Consortium
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe
Hemispheric asymmetry in ocean change and the productivity of ecosystem sentinels
Climate change and other human activities are causing profound effects on marine ecosystem productivity. We show that the breeding success of seabirds is tracking hemispheric differences in ocean warming and human impacts, with the strongest effects on fish-eating, surface-foraging species in the north. Hemispheric asymmetry suggests the need for ocean management at hemispheric scales. For the north, tactical, climate-based recovery plans for forage fish resources are needed to recover seabird breeding productivity. In the south, lower-magnitude change in seabird productivity presents opportunities for strategic management approaches such as large marine protected areas to sustain food webs and maintain predator productivity. Global monitoring of seabird productivity enables the detection of ecosystem change in remote regions and contributes to our understanding of marine climate impacts on ecosystems
Hemispheric asymmetry in ocean change and the productivity of ecosystem sentinels
Climate change and other human activities are causing profound effects on marine ecosystem productivity. We show that the breeding success of seabirds is tracking hemispheric differences in ocean warming and human impacts, with the strongest effects on fish-eating, surface-foraging species in the north. Hemispheric asymmetry suggests the need for ocean management at hemispheric scales. For the north, tactical, climate-based recovery plans for forage fish resources are needed to recover seabird breeding productivity. In the south, lower-magnitude change in seabird productivity presents opportunities for strategic management approaches such as large marine protected areas to sustain food webs and maintain predator productivity. Global monitoring of seabird productivity enables the detection of ecosystem change in remote regions and contributes to our understanding of marine climate impacts on ecosystems
- …