37 research outputs found

    AAV2-mediated gene transfer of GDNF to the striatum of MPTP monkeys enhances the survival and outgrowth of co-implanted fetal dopamine neurons

    Get PDF
    Neural transplantation offers the potential of treating Parkinson’s disease by grafting fetal dopamine neurons to depleted regions of the brain. However, clinical studies of neural grafting in Parkinson’s disease have produced only modest improvements. One of the main reasons for this is the low survival rate of transplanted neurons. The inadequate supply of critical neurotrophic factors in the adult brain is likely to be a major cause of early cell death and restricted outgrowth of fetal grafts placed into the mature striatum. Glial derived neurotrophic factor (GDNF) is a potent neurotrophic factor that is crucial to the survival, outgrowth and maintenance of dopamine neurons, and so is a candidate for protecting grafted fetal dopamine neurons in the adult brain. We found that implantation of adeno-associated virus type 2 encoding GDNF (AAV2-GDNF) in the normal monkey caudate nucleus induced over-expression of GDNF that persisted for at least 6 months after injection. In a 6-month within-animal controlled study, AAV2-GDNF enhanced the survival of fetal dopamine neurons by 4-fold, and increased the outgrowth of grafted fetal dopamine neurons by almost 3-fold in the caudate nucleus of MPTP-treated monkeys, compared with control grafts in the other caudate nucleus. Thus, the addition of GDNF gene therapy to neural transplantation may be a useful strategy to improve treatment for Parkinson’s disease

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    Whole genome sequence association analysis of fasting glucose and fasting insulin levels in diverse cohorts from the NHLBI TOPMed program

    Get PDF
    The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI’s Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe

    The different tissue transcription patterns of genes for HNF-1, C/EBP, HNF-3, and HNF-4, protein factors that govern liver-specific transcription.

    No full text

    Survival of Nigral Grafts within the Striatum of Marmosets with 6-Ohda Lesions Depends Critically on Donor Embryo Age

    No full text
    The study examined the importance of embryonic donor age for the survival of nigral grafts in 6-OHDA-lesioned marmosets. The issue as to whether donor age is critical for the survival of nigral grafts in primates is controversial, because several early reports suggested that relatively old tissue could survive transplantation and produce functional benefits in monkeys, in contrast to the restrictive time dependence observed in rodents. Embryonic marmoset donors embryos of three different ages were employed: 1) E74 (Carnegie stage 18–19); 2) E83–84 (Carnegie stage 23+); 3) E92–93 (foetal period). The nigral neurons derived from the ventral mesencephalon in the two older donor age groups did not survive well when grafted to the striatum of adult marmosets with unilateral 6-OHDA lesions. Although a few tyrosine hydroxylase (TH+) neurons could be identified by immunohistochemistry at graft sites in all recipients in older donor age groups, the numbers of surviving neurons in these were small, on average typically less than 100 TH+ cells. These small grafts were not sufficient to affect amphetamine-induced rotation. In contrast, many more TH+ cells typically survived transplantation in the recipients of graft tissue derived from the youngest donors and amphetamine-induced rotation was significantly reduced in this group alone. The time course and extent of the reduction in rotation was remarkably similar to that observed in previous marmoset nigral graft studies, confirming the utility of amphetamine-induced rotation as a sensitive and reliable indicator of nigral graft function in this species. Considering these results and other recent evidence from monkey to monkey, human to rat, and human to human graft studies, the survival of embryonic nigral tissues derived from primate donors transplanted into the striatum does appear to be critically dependent on the age of the donor tissue
    corecore