47 research outputs found

    Of Research reviews and practice guides: Translating rapidly growing research on adolescent literacy into updated practice recommendations.

    Get PDF
    The demand for evidence-based instructional practices has driven a large supply of research on adolescent literacy. Documenting this supply, Baye, Inns, Lake, and Slavin’s 2019 article in Reading Research Quarterly synthesized far more studies, with far more rigorous methodology, than had ever been collected before. What does this mean for practice? Inspired by this article, I investigated how this synthesis compared with the 2008 U.S. Institute of Education Sciences practice guide for adolescent literacy. I also include two contemporary documents for context: Herrera, Truckenmiller, and Foorman’s (2016) review and the U.K. Education Endowment Foundation’s 2019 practice guide for secondary schools. I first examine how these documents define adolescent, reading, and evidence, and propose more inclusive definitions. I then compare their respective evidence bases, finding that the quality and quantity of evidence have dramatically changed. Only one of the 34 studies in the 2008 U.S. practice guide met Baye et al.’s inclusion criteria in 2019, and the average sample size in Baye et al.’s studies was 22 times as large as those in the 2008 U.S. practice guide. I also examine the potential implications for a new practice guide’s instructional recommendations and comment on the expansion of research in technology, disciplinary literacy, and writing—topics scarcely covered in the 2008 U.S. practice guide but which have been extensively researched since then. Finally, I call for revision of the U.S. practice guide and the establishment of standing committees on adolescent literacy to help educators translate the latest research findings into updated practices

    Study of CP violation in B0 → DK⋆(892)0 decays with D → Kπ(ππ), ππ(ππ), and KK final states

    Get PDF
    A measurement of CP-violating observables associated with the interference of B0 → D0K⋆ (892)0 and B0 → D¯ 0K⋆ (892)0 decay amplitudes is performed in the D0 → K∓π ±(π +π −), D0 → π +π −(π +π −), and D0 → K+K− fnal states using data collected by the LHCb experiment corresponding to an integrated luminosity of 9 fb−1 . CP-violating observables related to the interference of B0 s → D0K¯ ⋆ (892)0 and B0 s → D¯ 0K¯ ⋆ (892)0 are also measured, but no evidence for interference is found. The B0 observables are used to constrain the parameter space of the CKM angle γ and the hadronic parameters r DK⋆ B0 and δ DK⋆ B0 with inputs from other measurements. In a combined analysis, these measurements allow for four solutions in the parameter space, only one of which is consistent with the world average

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations

    Measurement of the CKM angle γγ in B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm \to D π^\pm decays with DKS0h+hD \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+πK_{\mathrm S}\pi^+\pi^- and KSK+KK_{\mathrm S}K^+K^- (commonly denoted KSh+hK_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle γ\gamma. Using a data sample corresponding to an integrated luminosity of 9fb19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13TeV13\,\text{TeV} with the LHCb experiment, γ\gamma is measured to be (68.75.1+5.2)\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, δBDK\delta_B^{DK}, and δBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    The Akt Forkhead Box O Transcription Factor Axis Regulates Human Cytomegalovirus Replication

    No full text
    The protein kinase Akt broadly impacts many cellular processes, including mRNA translation, metabolism, apoptosis, and stress responses. Inhibition of phosphatidylinositol 3-kinase (PI3K), a lipid kinase pivotal to Akt activation, triggers various herpesviruses to reactivate from latency. Hence, decreased Akt activity may promote lytic replication. Here, we show that Akt accumulates in an inactive form during human cytomegalovirus (HCMV) infection of permissive fibroblasts, as indicated by hypophosphorylation of sites that activate Akt, decreased phosphorylation of PRAS40, and pronounced nuclear localization of FoxO3a, a substrate that remains cytoplasmic when Akt is active. HCMV strongly activates mTORC1 during lytic infection, suggesting a potential mechanism for Akt inactivation, since mTORC1 negatively regulates PI3K. However, we were surprised to observe that constitutive Akt activity, provided by expression of Akt fused to a myristoylation signal (myr-Akt), caused a 1-log decrease in viral replication, accompanied by defects in viral DNA synthesis and late gene expression. These results indicated that Akt inactivation is required for efficient viral replication, prompting us to address which Akt substrates underpin this requirement. Interestingly, we found that short interfering RNA knockdown of FoxO3a, but not FoxO1, phenocopied the defects caused by myr-Akt, corroborating a role for FoxO3a. Accordingly, a chimeric FoxO3a-estrogen receptor fusion protein, in which nuclear localization is regulated by 4-hydroxytamoxifen instead of Akt, reversed the replication defects caused by myr-Akt. Collectively, our results reveal a role for FoxO transcription factors in HCMV lytic replication and argue that this single class of Akt substrates underpins the requirement for Akt inactivation during productive infection. IMPORTANCE Evidence from diverse herpesvirus infection models suggests that the PI3K/Akt signaling pathway suppresses reactivation from latency and that inactivation of the pathway stimulates viral lytic replication. Here, we show that Akt accumulates in an inactive state during HCMV infection of lytically permissive cells while the presence of constitutive Akt activity causes substantial viral replication defects. Although Akt phosphorylates a diverse array of cellular substrates, we identify an important role for the Forkhead box class O transcription factors. Our findings show that when FoxO3a nuclear localization is decoupled from its negative regulation by Akt, the viral replication defects observed in the presence of constitutively active Akt are reversed. Collectively, our results reveal that HCMV inactivates Akt to promote the nuclear localization of FoxO transcription factors, which strongly implies that FoxOs play critical roles in transactivating cellular and/or viral genes during infection. Copyright © 2022 Zhang et al.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The European JASMIN Project for the Development of a New Safety Simulation Code, ASTEC-Na, for Na-cooled Fast Neutron Reactors

    No full text
    The 4-year JASMIN collaborative project, involving 9 organizations, was launched by IRSN end of 2011 within the 7th European R&D Framework Programme on the enhancement of Na-cooled Fast Neutron Reactors (SFR) safety for a higher resistance to severe accidents. The project aims at developing a new European simulation code, ASTEC-Na, with a modern architecture, sufficiently flexible to account for innovative reactor designs and eventually new types of fuel and claddings and accounting for results of recent research outcomes on water-cooled reactors. The code will be based on the ASTEC European code system, developed by IRSN and GRS for severe accidents in water-cooled reactors, and it will integrate and capitalize the state-of-the-art knowledge on SFR accidents through the improvement of existing physical models or the development of new ones. The code objectives will be to predict throughout the primary phase of the accidental sequence the cladding and fuel behaviour as well as the behaviour of the released fission products both in the primary circuit and in the containment vessel, including the extreme thermal-hydraulic conditions prevailing in case of Na fire. The main involved phenomena that will be investigated during the project include fuel element heat-up and failure, fuel-coolant-interaction, fuel dispersion or compaction, neutronics of the degraded core, fission product retention by sodium pool scrubbing, sodium aerosol depletion and physico-chemical transformations in the containment vessel. The first 18 month period of the project is mainly dedicated to build model specifications as well as code validation matrices related to fuel pin degradation in transient events and in-containment phenomena. The developed models will be validated as far as possible on existing in-pile (mainly the past CABRI experiments) and out-of-pile experimental data.JRC.F.5-Nuclear Reactor Safety Assessmen
    corecore