405 research outputs found

    Importance of Vanadium-Catalyzed Oxidation of SO2 to SO3 in Two-Stroke Marine Diesel Engines

    Get PDF
    Low-speed marine diesel engines are mostly operated on heavy fuel oils, which have a high content of sulfur and ash, including trace amounts of vanadium, nickel, and aluminum. In particular, vanadium oxides could catalyze in-cylinder oxidation of SO2 to SO3, promoting the formation of sulfuric acid and enhancing problems of corrosion. In the present work, the kinetics of the catalyzed oxidation was studied in a fixed-bed reactor at atmospheric pressure. Vanadium oxide nanoparticles were synthesized by spray flame pyrolysis, i.e., by a mechanism similar to the mechanism leading to the formation of the catalytic species within the engine. Experiments with different particle compositions (vanadium/sodium ratio) and temperatures (300–800 °C) show that both the temperature and sodium content have a major impact on the oxidation rate. Kinetic parameters for the catalyzed reaction are determined, and the proposed kinetic model fits well with the experimental data. The impact of the catalytic reaction is studied with a phenomenological zero-dimensional (0D) engine model, where fuel oxidation and SOx formation is modeled with a comprehensive gas-phase reaction mechanism. Results indicate that the oxidation of SO2 to SO3 in the cylinder is dominated by gas-phase reactions and that the vanadium-catalyzed reaction is at most a very minor pathway

    Modeling approach to regime shifts of primary production in shallow coastal ecosystems

    Full text link
    Pristine coastal shallow systems are usually dominated by extensive meadows of seagrass species, which are assumed to take advantage of nutrient supply from sediment. An increasing nutrient input is thought to favour phytoplankton, epiphytic microalgae, as well as opportunistic ephemeral macroalgae that coexist with seagrasses. The primary cause of shifts and succession in the macrophyte community is the increase of nutrient load to water; however temperature plays also an important role. A competition model between rooted seagrass (Zostera marina), macroalgae (Ulva sp), and phytoplankton has been developed to analyse the succession of primary producer communities in these systems. Successions of dominance states, with different resilience characteristics, are found when modifying the input of nutrients and the seasonal temperature and light intensity forcing.Comment: 33 pages, including 10 figures. To appear in Ecological Complexit

    Precision Primordial 4^4He Measurement with CMB Experiments

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are two major pillars of cosmology. Standard BBN accurately predicts the primordial light element abundances (4^4He, D, 3^3He and 7^7Li), depending on one parameter, the baryon density. Light element observations are used as a baryometers. The CMB anisotropies also contain information about the content of the universe which allows an important consistency check on the Big Bang model. In addition CMB observations now have sufficient accuracy to not only determine the total baryon density, but also resolve its principal constituents, H and 4^4He. We present a global analysis of all recent CMB data, with special emphasis on the concordance with BBN theory and light element observations. We find ΩBh2=0.025+0.00190.0026\Omega_{B}h^{2}=0.025+0.0019-0.0026 and Yp=0.250+0.0100.014Y_{p}=0.250+0.010-0.014 (fraction of baryon mass as 4^4He) using CMB data alone, in agreement with 4^4He abundance observations. With this concordance established we show that the inclusion of BBN theory priors significantly reduces the volume of parameter space. In this case, we find ΩBh2=0.0244+0.001370.00284\Omega_{B}h^2=0.0244+0.00137-0.00284 and Yp=0.2493+0.00060.001Y_p = 0.2493+0.0006-0.001. We also find that the inclusion of deuterium abundance observations reduces the YpY_p and ΩBh2\Omega_{B}h^2 ranges by a factor of \sim 2. Further light element observations and CMB anisotropy experiments will refine this concordance and sharpen BBN and the CMB as tools for precision cosmology.Comment: 7 pages, 3 color figures made minor changes to bring inline with journal versio

    Quasicondensate and superfluid fraction in the 2D charged-boson gas at finite temperature

    Full text link
    The Bogoliubov - de Gennes equations are solved for the Coulomb Bose gas describing a fluid of charged bosons at finite temperature. The approach is applicable in the weak coupling regime and the extent of its quantitative usefulness is tested in the three-dimensional fluid, for which diffusion Monte Carlo data are available on the condensate fraction at zero temperature. The one-body density matrix is then evaluated by the same approach for the two-dimensional fluid with e^2/r interactions, to demonstrate the presence of a quasi-condensate from its power-law decay with increasing distance and to evaluate the superfluid fraction as a function of temperature at weak coupling.Comment: 9 pages, 2 figure

    Isospin Asymmetry in Nuclei and Neutron Stars

    Full text link
    The roles of isospin asymmetry in nuclei and neutron stars are investigated using a range of potential and field-theoretical models of nucleonic matter. The parameters of these models are fixed by fitting the properties of homogeneous bulk matter and closed-shell nuclei. We discuss and unravel the causes of correlations among the neutron skin thickness in heavy nuclei, the pressure of beta-equilibrated matter at a density of 0.1 fm3^{-3}, the derivative of the nuclear symmetry energy at the same density and the radii of moderate mass neutron stars. Constraints on the symmetry properties of nuclear matter from the binding energies of nuclei are examined. The extent to which forthcoming neutron skin measurements will further delimit the symmetry properties is investigated. The impact of symmetry energy constraints for the mass and moment of inertia contained within neutron star crusts and the threshold density for the nucleon direct Urca process, all of which are potentially measurable, is explored. We also comment on the minimum neutron star radius, assuming that only nucleonic matter exists within the star.Comment: 49 pages, 17 figures, Phys. Rep. (in press); made improvements to "RAPR" and corrected transition densitie

    Bifurcation treatment with novel, highly flexible drug-eluting coronary stents in all-comers: 2-year outcome in patients of the DUTCH PEERS trial

    Get PDF
    Background: Percutaneous coronary intervention (PCI) in bifurcated lesions with second-generation drug-eluting stents (DES) was associated with increased myocardial infarction (MI) rates. Flexible stent designs that accommodate well to vessel tapering may be of benefit in challenging anatomies such as bifurcated target lesions, but so far data are scarce.Methods: We analyzed the 2-year follow-up data of the DUTCH PEERS (TWENTE II) trial, which randomized 1811 all-comer patients to PCI with newer generation resolute integrity zotarolimus-eluting (Medtronic) or promus element everolimus-eluting stents (Boston Scientific). In bifurcated lesions, provisional stenting was generally performed. Target vessel failure is a composite endpoint, consisting of cardiac death, target vessel MI, or target vessel revascularization.Results: Patients with at least one bifurcated lesion (n = 465, 25.7 %) versus patients with non-bifurcated target lesions only (n = 1346, 74.3 %) showed similar rates of clinical endpoints including target vessel failure (9.2 versus 7.9 %, p = 0.36) and definite stent thrombosis (0.4 versus 1.0 %, p = 0.38). Target vessel MI was more common in patients with bifurcated lesions (3.4 versus 1.6 %, p = 0.02); but after multivariate analysis with propensity score adjustment, bifurcation treatment was found not to be an independent predictor of target vessel MI (HR 1.40, 95 % CI 0.71–2.76; p = 0.34). Among patients with bifurcated lesions, DES type and side-branch size did not affect outcome, but periprocedural MI occurred more often after two-stent approaches (9.0 versus 2.1 %; p = 0.002).Conclusion: All-comer patients treated for bifurcated and non-bifurcated target lesions showed similar and low rates of clinical endpoints, suggesting that the DES used are efficacious and safe for treating bifurcated target lesions

    Hopf algebras and Markov chains: Two examples and a theory

    Get PDF
    The operation of squaring (coproduct followed by product) in a combinatorial Hopf algebra is shown to induce a Markov chain in natural bases. Chains constructed in this way include widely studied methods of card shuffling, a natural "rock-breaking" process, and Markov chains on simplicial complexes. Many of these chains can be explictly diagonalized using the primitive elements of the algebra and the combinatorics of the free Lie algebra. For card shuffling, this gives an explicit description of the eigenvectors. For rock-breaking, an explicit description of the quasi-stationary distribution and sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes will only appear on the version on Amy Pang's website, the arXiv version will not be updated.

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Have Superheavy Elements been Produced in Nature?

    Full text link
    We discuss the possibility whether superheavy elements can be produced in Nature by the astrophysical rapid neutron capture process. To this end we have performed fully dynamical network r-process calculations assuming an environment with neutron-to-seed ratio large enough to produce superheavy nuclei. Our calculations include two sets of nuclear masses and fission barriers and include all possible fission channels and the associated fission yield distributions. Our calculations produce superheavy nuclei with A ~ 300 that however decay on timescales of days.Comment: 12 pages, 11 figure
    corecore