106 research outputs found

    Variation in seizure risk increases from antiseizure medication withdrawal among patients with well-controlled epilepsy: a pooled analysis

    Get PDF
    ObjectiveGuidelines suggest considering antiseizure medication (ASM) discontinuation in seizure-free patients with epilepsy. Past work has poorly explored how discontinuation effects vary between patients. We evaluated (1) what factors modify the influence of discontinuation on seizure risk; and (2) the range of seizure risk increase due to discontinuation across low- versus high-risk patients.MethodsWe pooled three datasets including seizure-free patients who did and did not discontinue ASMs. We conducted time-to-first-seizure analyses. First, we evaluated what individual patient factors modified the relative effect of ASM discontinuation on seizure risk via interaction terms. Then, we assessed the distribution of 2-year risk increase as predicted by our adjusted logistic regressions.ResultsWe included 1626 patients, of whom 678 (42%) planned to discontinue all ASMs. The mean predicted 2-year seizure risk was 43% [95% confidence interval (CI) 39%–46%] for discontinuation versus 21% (95% CI 19%–24%) for continuation. The mean 2-year absolute seizure risk increase was 21% (95% CI 18%–26%). No individual interaction term was significant after correcting for multiple comparisons. The median [interquartile range (IQR)] risk increase across patients was 19% (IQR 14%–24%; range 7%–37%). Results were unchanged when restricting analyses to only the two RCTs.SignificanceNo single patient factor significantly modified the influence of discontinuation on seizure risk, although we captured how absolute risk increases change for patients that are at low versus high risk. Patients should likely continue ASMs if even a 7% 2-year increase in the chance of any more seizures would be too much and should likely discontinue ASMs if even a 37% risk increase would be too little. In between these extremes, individualized risk calculation and a careful understanding of patient preferences are critical. Future work will further develop a two-armed individualized seizure risk calculator and contextualize seizure risk thresholds below which to consider discontinuation.Plain Language SummaryUnderstanding how much antiseizure medications (ASMs) decrease seizure risk is an important part of determining which patients with epilepsy should be treated, especially for patients who have not had a seizure in a while. We found that there was a wide range in the amount that ASM discontinuation increases seizure risk—between 7% and 37%. We found that no single patient factor modified that amount. Understanding what a patient's seizure risk might be if they discontinued versus continued ASM treatment is critical to making informed decisions about whether the benefit of treatment outweighs the downsides.Paroxysmal Cerebral Disorder

    Unfolding of differential energy spectra in the MAGIC experiment

    Get PDF
    The paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses.Comment: Submitted to NIM

    Implementation of the Random Forest Method for the Imaging Atmospheric Cherenkov Telescope MAGIC

    Get PDF
    The paper describes an application of the tree classification method Random Forest (RF), as used in the analysis of data from the ground-based gamma telescope MAGIC. In such telescopes, cosmic gamma-rays are observed and have to be discriminated against a dominating background of hadronic cosmic-ray particles. We describe the application of RF for this gamma/hadron separation. The RF method often shows superior performance in comparison with traditional semi-empirical techniques. Critical issues of the method and its implementation are discussed. An application of the RF method for estimation of a continuous parameter from related variables, rather than discrete classes, is also discussed.Comment: 16 pages, 8 figure

    Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

    Get PDF
    We analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index \simeq 1 + (E/M_{QGn})^n, n = 1,2. Parametrizing the delay between gamma-rays of different energies as \Delta t =\pm\tau_l E or \Delta t =\pm\tau_q E^2, we find \tau_l=(0.030\pm0.012) s/GeV at the 2.5-sigma level, and \tau_q=(3.71\pm2.57)x10^{-6} s/GeV^2, respectively. We use these results to establish lower limits M_{QG1} > 0.21x10^{18} GeV and M_{QG2} > 0.26x10^{11} GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.Comment: 12 pages, 3 figures, Phys. Lett. B, reflects published versio

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X

    First measurement of the polarization observable E and helicity-dependent cross sections in single π0 photoproduction from quasi-free nucleons

    Get PDF
    The double-polarization observable E and the helicity-dependent cross sections σ1/2 and σ3/2 have been measured for the first time for single π0 photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the π0 meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the π0N final state. A comparison to data measured with a free proton target showed that the absolute scale of the cross sections is significantly modified by nuclear final-state interaction (FSI) effects. However, there is no significant effect on the asymmetry E since the σ1/2 and σ3/2 components appear to be influenced in a similar way. Thus, the best approximation of the two helicity-dependent cross sections for the free neutron is obtained by combining the asymmetry E measured with quasi-free neutrons and the unpolarized cross section corrected for FSI effects under the assumption that the FSI effects are similar for neutrons and protons
    • …
    corecore