110 research outputs found
Recommended from our members
High Energy Physics Program at the University of Alabama
This report discusses the following topics: study of Z{sup 0} decays; QCD; new particles; Higgs bosons; and forward hadron calorimeter system
Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model in e+e- Interactions at \sqrt{s} = 189 GeV
A search for the lightest neutral scalar and neutral pseudoscalar Higgs
bosons in the Minimal Supersymmetric Standard Model is performed using 176.4
pb^-1 of integrated luminosity collected by L3 at a center-of-mass energy of
189 GeV. No signal is observed, and the data are consistent with the expected
Standard Model background. Lower limits on the masses of the lightest neutral
scalar and pseudoscalar Higgs bosons are given as a function of tan(beta).
Lower mass limits for tan(beta)>1 are set at the 95% confidence level to be m_h
> 77.1 GeV and m_A > 77.1 GeV
Search for Extra Dimensions in Boson and Fermion Pair Production in e+e- Interactions at LEP
Extra spatial dimensions are proposed by recent theories that postulate the
scale of gravity to be of the same order as the electroweak scale. A sizeable
interaction between gravitons and Standard Model particles is then predicted.
Effects of these new interactions in boson and fermion pair production are
searched for in the data sample collected at centre-of-mass energies above the
Z pole by the L3 detector at LEP. In addition, the direct production of a
graviton associated with a Z boson is investigated. No statistically
significant hints for the existence of these effects are found and lower limits
in excess of 1 TeV are derived on the scale of this new theory of gravity
Measurement of Triple-Gauge-Boson Couplings of the W Boson at LEP
We report on measurements of the triple-gauge-boson couplings of the W boson
in e+e- collisions with the L3 detector at LEP. W-pair, single-W and
single-photon events are analysed in a data sample corresponding to a total
luminosity of 76.7 pb^{-1} collected at centre-of-mass energies between 161 GeV
and 183 GeV. CP-conserving as well as both C- and P-conserving
triple-gauge-boson couplings are determined. The results, in good agreement
with the Standard-Model expectations, confirm the existence of the self
coupling among the electroweak gauge bosons and constrain its structure
Measurement of Mass and Width of the W Boson at LEP
We report on measurements of the mass and total decay width of the W boson
with the L3 detector at LEP. W-pair events produced in
interactions between 161 GeV and 183 GeV centre-of-mass energy are selected in
a data sample corresponding to a total luminosity of 76.7 pb. Combining
all final states in W-pair production, the mass and total decay width of the W
boson are determined to be GeV and
GeV, respectively
Search for Heavy Neutral and Charged Leptons in ee Annihilation at = 183 and 189 GeV
A search for unstable neutral and charged heavy leptons as well as for stable
charged heavy leptons is performed at center-of-mass energies = 183
and 189 GeV with the L3 detector at LEP. No evidence for their existence is
found. We exclude neutral heavy leptons which couple to the electron, muon or
tau family, of the Dirac type for masses below 92.4, 93.3 and 83.3 GeV, and of
the Majorana type for masses below 81.8, 84.1 and 73.5 GeV, respectively. We
exclude unstable charged heavy leptons for masses below 93.9 GeV for a wide
range of the associated neutral heavy lepton mass. If the unstable charged
heavy lepton decays to a light neutrino, we exclude masses below 92.4 GeV. The
production of stable charged heavy leptons with mass less than 93.5 GeV is also
excluded
Measurement of an Elongation of the Pion Source in Z Decays
We measure Bose-Einstein correlations between like-sign charged pion pairs in
hadronic Z decays with the L3 detector at LEP. The analysis is performed in
three dimensions in the longitudinal center-of-mass system. The pion source is
found to be elongated along the thrust axis with a ratio of transverse to
longitudinal radius of
Measurement of the Spectroscopy of Orbitally Excited B Mesons at LEP
We measure the masses, decay widths and relative production rate of orbitally
excited B mesons using 1.25 million hadronic Z decays recorded by the L3
detector. B-meson candidates are inclusively reconstructed and combined with
charged pions produced at the primary event vertex. An excess of events above
the expected background in the B\pi mass spectrum in the region 5.6-5.8 GeV is
interpreted as resulting from the decay B_u,d^** -> B^(*)\pi, where B_u,d^**
denotes a mixture of l=1 B-meson states containing a u or a d quark. A fit to
the mass spectrum yields the masses and decay widths of the B_1^* and B_2^*
spin states, as well as the branching fraction for the combination of l=1
states. In addition, evidence is presented for the existence of an excited
B-meson state or mixture of states in the region 5.9-6.0 GeV
Measurement of the incoherent photoproduction near threshold
We report measurements of differential cross sections and decay asymmetries
of incoherent -meson photoproduction from the deuteron at forward angles
using linearly polarized photons at \Eg=1.5-2.4 GeV. The nuclear transparency
ratio for the deuteron shows a large suppression, and is consistent with the
A-dependence of the ratio observed in a previous measurement with nuclear
targets. The reduction for the deuteron cannot be adequately explained in term
of isospin asymmetry. The present results suggest the need of refining our
understanding of the -N interaction within a nucleus.Comment: 5 pages, 4 figures. Published in Physics Letters
Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 Ă 10-48cm2 for a 40 GeV/c2 mass WIMP.
Additionally, a 5Ï discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 Ă 10â43 cm2 (7.1 Ă 10â42 cm2) for a 40 GeV/c2
mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020
- âŠ