7 research outputs found

    Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory

    Get PDF
    From direct observations of the longitudinal development of ultra-high energy air showers performed with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV (1 EeV = 10^18 eV) respectively. These are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results complement previous constraints on top-down models from array data and they reduce systematic uncertainties in the interpretation of shower data in terms of primary flux, nuclear composition and proton-air cross-section.Comment: 20 pages, 7 figures, 2 tables. Minor changes. Accepted by Astroparticle Physic

    Field-Based Evidence for Intra-Slab High-Permeability Channel Formation at Eclogite-Facies Conditions During Subduction

    No full text
    Fluid release from subducting oceanic lithosphere is a key process for subduction zone geodynamics, from controlling arc volcanism to seismicity and tectonic exhumation. However, many fundamental details of fluid composition, flow pathways, and reactivity with slab-forming rocks remain to be thoroughly understood. In this study we investigate a multi-kilometer-long, high-pressure metasomatic system preserved in the lawsonite-eclogite metamorphic unit of Alpine Corsica, France. The fluid-mediated process was localized along a major intra-slab interface, which is the contact between basement and cover unit. Two distinct metasomatic stages are identified and discussed. We show that these two stages resulted from the infiltration of deep fluids that were derived from the same source and had the same slab-parallel, updip flow direction. By mass balance analysis, we quantify metasomatic mass changes along this fluid pathway and the time-integrated fluid fluxes responsible for them. In addition, we also assess carbon fluxes associated with these metasomatic events. The magnitude of the estimated fluid fluxes (104\u2013105) indicates that major intra-slab interfaces such as lithological boundaries acted as fluid channels facilitating episodic pulses of fluid flow. We also show that when fluids are channelized, high time-integrated fluid fluxes lead to carbon fluxes several orders of magnitude higher than carbon fluxes generated by local dehydration reactions. Given the size and geologic features of the investigated metasomatic system, we propose that it represents the first reported natural analogue of the so-called high permeability channels predicted by numerical simulations

    Evolution of the global carbon cycle and climate regulation on Earth

    Get PDF
    The existence of stabilizing feedbacks within Earth's climate system is generally thought to be necessary for the persistence of liquid water and life. Over the course of Earth's history, Earth's atmospheric composition appears to have adjusted to the gradual increase in solar luminosity, resulting in persistently habitable surface temperatures. With limited exceptions, the Earth system has been observed to recover rapidly from pulsed climatic perturbations. Carbon dioxide (CO₂) regulation via negative feedbacks within the coupled global carbon‐silica cycles are classically viewed as the main processes giving rise to climate stability on Earth. Here we review the long‐term global carbon cycle budget, and how the processes modulating Earth's climate system have evolved over time. Specifically, we focus on the relative roles that shifts in carbon sources and sinks have played in driving long‐term changes in atmospheric pCO₂. We make the case that marine processes are an important component of the canonical silicate weathering feedback, and have played a much more important role in CO₂ regulation than traditionally imagined. Notably, geochemical evidence indicate that the weathering of marine sediments and off‐axis basalt alteration act as major carbon sinks. However, this sink was potentially dampened during Earth's early history when oceans had higher levels of dissolved silicon (Si), iron (Fe), and magnesium (Mg), and instead likely fostered more extensive carbon recycling within the ocean‐atmosphere system via reverse weathering—that in turn acted to elevate ocean‐atmosphere CO₂ levels
    corecore