674 research outputs found
Restricted Boolean group rings
summary:In this paper we study restricted Boolean rings and group rings. A ring is if every proper homomorphic image of is boolean. Our main aim is to characterize restricted Boolean group rings. A complete characterization of non-prime restricted Boolean group rings has been obtained. Also in case of prime group rings necessary conditions have been obtained for a group ring to be restricted Boolean. A counterexample is given to show that these conditions are not sufficient
Caloric Curves and Nuclear Expansion
Nuclear caloric curves have been analyzed using an expanding Fermi gas
hypothesis to extract average nuclear densities. In this approach the observed
flattening of the caloric curves reflects progressively increasing expansion
with increasing excitation energy. This expansion results in a corresponding
decrease in the density and Fermi energy of the excited system. For nuclei of
medium to heavy mass apparent densities ~ 0.4 rho_0 are reached at the higher
excitation energies.Comment: 4 pages, 3 figure
Last Call for RHIC Predictions
This paper contains the individual contributions of all speakers of the
session on 'Last Call for RHIC Predictions' at Quark Matter 99, and a summary
by the convenor.Comment: 56 pages, psfig, epsf, epsfig, graphicx style files required,
Proceedings of the XIV Int. Conf. on Nucleus-Nucleus Collisions, Quark Matter
99, Torino, Italy, May 10 - 15, 1999. Typographical mistakes corrected and
figure numbers change
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
High non-photonic electron production in + collisions at = 200 GeV
We present the measurement of non-photonic electron production at high
transverse momentum ( 2.5 GeV/) in + collisions at
= 200 GeV using data recorded during 2005 and 2008 by the STAR
experiment at the Relativistic Heavy Ion Collider (RHIC). The measured
cross-sections from the two runs are consistent with each other despite a large
difference in photonic background levels due to different detector
configurations. We compare the measured non-photonic electron cross-sections
with previously published RHIC data and pQCD calculations. Using the relative
contributions of B and D mesons to non-photonic electrons, we determine the
integrated cross sections of electrons () at 3 GeV/10 GeV/ from bottom and charm meson decays to be = 4.0({\rm
stat.})({\rm syst.}) nb and =
6.2({\rm stat.})({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at GeV
We present first measurements of the evolution of the differential transverse
momentum correlation function, {\it C}, with collision centrality in Au+Au
interactions at GeV. {\it C} exhibits a strong dependence
on collision centrality that is qualitatively similar to that of number
correlations previously reported. We use the observed longitudinal broadening
of the near-side peak of {\it C} with increasing centrality to estimate the
ratio of the shear viscosity to entropy density, , of the matter formed
in central Au+Au interactions. We obtain an upper limit estimate of
that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at GeV
Identified mid-rapidity particle spectra of , , and
from 200 GeV p+p and d+Au collisions are reported. A
time-of-flight detector based on multi-gap resistive plate chamber technology
is used for particle identification. The particle-species dependence of the
Cronin effect is observed to be significantly smaller than that at lower
energies. The ratio of the nuclear modification factor () between
protons and charged hadrons () in the transverse momentum
range GeV/c is measured to be
(stat)(syst) in minimum-bias collisions and shows little
centrality dependence. The yield ratio of in minimum-bias d+Au
collisions is found to be a factor of 2 lower than that in Au+Au collisions,
indicating that the Cronin effect alone is not enough to account for the
relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from
transverse momentum 1.8 GeV/c to 3. GeV/
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
- …