149 research outputs found
User guide for the Biosphere Isotope Domains GB (Version 1) dataset and web portal
This report is a user guide for the Biosphere Isotope Domains GB (V1) dataset, which includes (1) a GIS layer for strontium, sulphur and oxygen isotopes (2) datasets of strontium and sulphur isotope measurements from samples across the Great Britain - published separately and available via BGS and (3) a web portal for viewing and querying the data. A description of the data, methodology and assumptions used in the construction of the Biosphere Isotope Domains GB map is included in the associated publications for strontium (Evans, 2018) and sulphur (Chenery, 2018). The primary application of such datasets is for determining the provenance of skeletal material; although the data may also be of use in modern traceability studies of fauna and flora
Structure-function analysis reveals that the Pseudomonas aeruginosa Tps4 two-partner secretion system is involved in CupB5 translocation
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium, synonymous with cystic fibrosis patients, which can cause chronic infection of the lungs. This pathogen is a model organism to study biofilms: a bacterial population embedded in an extracellular matrix that provide protection from environmental pressures and lead to persistence. A number of Chaperone-Usher Pathways, namely CupA-CupE, play key roles in these processes by assembling adhesive pili on the bacterial surface. One of these, encoded by the cupB operon, is unique as it contains a nonchaperone-usher gene product, CupB5. Two-partner secretion (TPS) systems are comprised of a C-terminal integral membrane β-barrel pore with tandem N-terminal POTRA (POlypeptide TRansport Associated) domains located in the periplasm (TpsB) and a secreted substrate (TpsA). Using NMR we show that TpsB4 (LepB) interacts with CupB5 and its predicted cognate partner TpsA4 (LepA), an extracellular protease. Moreover, using cellular studies we confirm that TpsB4 can translocate CupB5 across the P. aeruginosa outer membrane, which contrasts a previous observation that suggested the CupB3 P-usher secretes CupB5. In support of our findings we also demonstrate that tps4/cupB operons are coregulated by the RocS1 sensor suggesting P. aeruginosa has developed synergy between these systems. Furthermore, we have determined the solution-structure of the TpsB4-POTRA1 domain and together with restraints from NMR chemical shift mapping and in vivo mutational analysis we have calculated models for the entire TpsB4 periplasmic region in complex with both TpsA4 and CupB5 secretion motifs. The data highlight specific residues for TpsA4/CupB5 recognition by TpsB4 in the periplasm and suggest distinct roles for each POTRA domain
Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves
The dynamic patterning of the plant hormone auxin and its efflux facilitator
the PIN protein are the key regulator for the spatial and temporal organization
of plant development. In particular auxin induces the polar localization of its
own efflux facilitator. Due to this positive feedback auxin flow is directed
and patterns of auxin and PIN arise. During the earliest stage of vein
initiation in leaves auxin accumulates in a single cell in a rim of epidermal
cells from which it flows into the ground meristem tissue of the leaf blade.
There the localized auxin supply yields the successive polarization of PIN
distribution along a strand of cells. We model the auxin and PIN dynamics
within cells with a minimal canalization model. Solving the model analytically
we uncover an excitable polarization front that triggers a polar distribution
of PIN proteins in cells. As polarization fronts may extend to opposing
directions from their initiation site we suggest a possible resolution to the
puzzling occurrence of bipolar cells, such we offer an explanation for the
development of closed, looped veins. Employing non-linear analysis we identify
the role of the contributing microscopic processes during polarization.
Furthermore, we deduce quantitative predictions on polarization fronts
establishing a route to determine the up to now largely unknown kinetic rates
of auxin and PIN dynamics.Comment: 9 pages, 4 figures, supplemental information included, accepted for
publication in Eur. Phys. J.
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2
The hadronic structure function of the photon F_2^gamma is measured as a
function of Bjorken x and of the factorisation scale Q^2 using data taken by
the OPAL detector at LEP. Previous OPAL measurements of the x dependence of
F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of
F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted
by QCD, the data show positive scaling violations in F_2^gamma. Several
parameterisations of F_2^gamma are in agreement with the measurements whereas
the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001,
Ascona, Switzerlan
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays
The lifetime and oscillation frequency of the B0 meson has been measured
using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP.
The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the
production flavour of the B0 mesons was determined using a combination of tags
from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d
= 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first
error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.
WW Production Cross Section and W Branching Fractions in e+e- Collisions at 189 GeV
From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots
= 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are
selected. Assuming Standard Model W boson decay branching fractions, the W-pair
production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +-
0.18(syst.) pb. When combined with previous OPAL measurements, the W boson
branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +-
0.28(syst.) % assuming lepton universality. These results are consistent with
Standard Model expectations.Comment: 22 pages, 5 figures, submitted to Phys. Lett.
Genuine Correlations of Like-Sign Particles in Hadronic Z0 Decays
Correlations among hadrons with the same electric charge produced in Z0
decays are studied using the high statistics data collected from 1991 through
1995 with the OPAL detector at LEP. Normalized factorial cumulants up to fourth
order are used to measure genuine particle correlations as a function of the
size of phase space domains in rapidity, azimuthal angle and transverse
momentum. Both all-charge and like-sign particle combinations show strong
positive genuine correlations. One-dimensional cumulants initially increase
rapidly with decreasing size of the phase space cells but saturate quickly. In
contrast, cumulants in two- and three-dimensional domains continue to increase.
The strong rise of the cumulants for all-charge multiplets is increasingly
driven by that of like-sign multiplets. This points to the likely influence of
Bose-Einstein correlations. Some of the recently proposed algorithms to
simulate Bose-Einstein effects, implemented in the Monte Carlo model PYTHIA,
are found to reproduce reasonably well the measured second- and higher-order
correlations between particles with the same charge as well as those in
all-charge particle multiplets.Comment: 26 pages, 6 figures, Submitted to Phys. Lett.
- …