3,950 research outputs found

    Mesoscale dynamics on the Sun's surface from HINODE observations

    Full text link
    Aims: The interactions of velocity scales on the Sun's surface, from granulation to supergranulation are still not understood, nor are their interaction with magnetic fields. We thus aim at giving a better description of dynamics in the mesoscale range which lies between the two scales mentioned above. Method: We analyse a 48h high-resolution time sequence of the quiet Sun photosphere at the disk center obtained with the Solar Optical Telescope onboard Hinode. The observations, which have a field of view of 100 \arcsec×\times 100 \arcsec, typically contain four supergranules. We monitor in detail the motion and evolution of granules as well as those of the radial magnetic field. Results: This analysis allows us to better characterize Trees of Fragmenting Granules issued from repeated fragmentation of granules, especially their lifetime statistics. Using floating corks advected by measured velocity fields, we show their crucial role in the advection of the magnetic field and in the build up of the network. Finally, thanks to the long duration of the time series, we estimate that the turbulent diffusion coefficient induced by horizontal motion is approximately 430km2s1430 \mathrm{km}^2 \mathrm{s}^{-1}. Conclusions: These results demonstrate that the long living families contribute to the formation of the magnetic network and suggest that supergranulation could be an emergent length scale building up as small magnetic elements are advected and concentrated by TFG flows. Our estimate for the magnetic diffusion associated with this horizontal motion might provide a useful input for mean-field dynamo models.Comment: to appear in A&A - 8 pages, 13 figures (degraded quality) - Full resolution version available @ http://www.ast.obs-mip.fr/users/rincon/hinode_roudier_aa09.pd

    The SPHERE data center: a reference for high contrast imaging processing

    Get PDF
    The objective of the SPHERE Data Center is to optimize the scientific return of SPHERE at the VLT, by providing optimized reduction procedures, services to users and publicly available reduced data. This paper describes our motivation, the implementation of the service (partners, infrastructure and developments), services, description of the on-line data, and future developments. The SPHERE Data Center is operational and has already provided reduced data with a good reactivity to many observers. The first public reduced data have been made available in 2017. The SPHERE Data Center is gathering a strong expertise on SPHERE data and is in a very good position to propose new reduced data in the future, as well as improved reduction procedures.Comment: SF2A proceeding

    Dynamic reconfiguration of human brain networks during learning

    Get PDF
    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we explore the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.Comment: Main Text: 19 pages, 4 figures Supplementary Materials: 34 pages, 4 figures, 3 table

    Impact of the European Clinical Trials Directive on prospective academic clinical trials associated with BMT

    Get PDF
    The European Clinical Trials Directive (EU 2001; 2001/20/EC) was introduced to improve the efficiency of commercial and academic clinical trials. Concerns have been raised by interested organizations and institutions regarding the potential for negative impact of the Directive on non-commercial European clinical research. Interested researchers within the European Group for Blood and Marrow Transplantation (EBMT) were surveyed to determine whether researcher experiences confirmed this view. Following a pilot study, an internet-based questionnaire was distributed to individuals in key research positions in the European haemopoietic SCT community. Seventy-one usable questionnaires were returned from participants in different EU member states. The results indicate that the perceived impact of the European Clinical Trials Directive has been negative, at least in the research areas of interest to the EBMT

    Retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks

    Get PDF
    The retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks are derived and studied in replica-symmetric mean-field theory generalizing earlier works on either the fully connected or the symmetrical extremely diluted network. Capacity-gain parameter phase diagrams are obtained for the Q=3, Q=4 and Q=Q=\infty state networks with uniformly distributed patterns of low activity in order to search for the effects of a gradual dilution of the synapses. It is shown that enlarged regions of continuous changeover into a region of optimal performance are obtained for finite stochastic noise and small but finite connectivity. The de Almeida-Thouless lines of stability are obtained for arbitrary connectivity, and the resulting phase diagrams are used to draw conclusions on the behavior of symmetrically diluted networks with other pattern distributions of either high or low activity.Comment: 21 pages, revte

    Energy Conservation Constraints on Multiplicity Correlations in QCD Jets

    Get PDF
    We compute analytically the effects of energy conservation on the self-similar structure of parton correlations in QCD jets. The calculations are performed both in the constant and running coupling cases. It is shown that the corrections are phenomenologically sizeable. On a theoretical ground, energy conservation constraints preserve the scaling properties of correlations in QCD jets beyond the leading log approximation.Comment: 11 pages, latex, 5 figures, .tar.gz version avaliable on ftp://www.inln.unice.fr

    Predicting convective blueshift and radial-velocity dispersion due to granulation for FGK stars

    Get PDF
    To detect Earth-mass planets using the Doppler method, a major obstacle is to differentiate the planetary signal from intrinsic stellar variability (e.g., pulsations, granulation, spots and plages). Convective blueshift, which results from small-scale convection at the surface of Sun-like stars, is relevant for Earth-twin detections as it exhibits Doppler noise on the order of 1 m/s. Here, we present a simple model for convective blueshift based on fundamental equations of stellar structure. Our model successfully matches observations of convective blueshift for FGK stars. Based on our model, we also compute the intrinsic noise floor for stellar granulation in the radial velocity observations. We find that for a given mass range, stars with higher metallicities display lower radial-velocity dispersion due to granulation, in agreement with MHD simulations. We also provide a set of formulae to predict the amplitude of radial-velocity dispersion due to granulation as a function of stellar parameters. Our work is vital in identifying the most amenable stellar targets for EPRV surveys and radial velocity follow-up programmes for TESS, CHEOPS, and the upcoming PLATO mission.Comment: 11 pages, 5 figures, 3 tables. Submitted, under revie

    Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer

    Get PDF
    We report on the direct observation of the transmission phase shift through a Kondo correlated quantum dot by employing a new type of two-path interferometer. We observed a clear π/2\pi/2-phase shift, which persists up to the Kondo temperature TKT_{\rm K}. Above this temperature, the phase shifts by more than π/2\pi/2 at each Coulomb peak, approaching the behavior observed for the standard Coulomb blockade regime. These observations are in remarkable agreement with 2-level numerical renormalization group calculations. The unique combination of experimental and theoretical results presented here fully elucidates the phase evolution in the Kondo regime.Comment: 4 pages, 3 figure

    Cross-Over between universality classes in a magnetically disordered metallic wire

    Full text link
    In this article we present numerical results of conduction in a disordered quasi-1D wire in the possible presence of magnetic impurities. Our analysis leads us to the study of universal properties in different conduction regimes such as the localized and metallic ones. In particular, we analyse the cross-over between universality classes occurring when the strength of magnetic disorder is increased. For this purpose, we use a numerical Landauer approach, and derive the scattering matrix of the wire from electron's Green's function.Comment: Final version, accepted for publication in New Journ. of Physics, 27 pages, 28 figures. Replaces the earlier shorter preprint arXiv:0910.427
    corecore