81 research outputs found

    Antiproton and Positron Signal Enhancement in Dark Matter Mini-Spikes Scenarios

    Full text link
    The annihilation of dark matter (DM) in the Galaxy could produce specific imprints on the spectra of antimatter species in Galactic cosmic rays, which could be detected by upcoming experiments such as PAMELA and AMS02. Recent studies show that the presence of substructures can enhance the annihilation signal by a "boost factor" that not only depends on energy, but that is intrinsically a statistical property of the distribution of DM substructures inside the Milky Way. We investigate a scenario in which substructures consist of 100\sim 100 "mini-spikes" around intermediate-mass black holes. Focusing on primary positrons and antiprotons, we find large boost factors, up to a few thousand, that exhibit a large variance at high energy in the case of positrons and at low energy in the case of antiprotons. As a consequence, an estimate of the DM particle mass based on the observed cut-off in the positron spectrum could lead to a substantial underestimate of its actual value.Comment: 13 pages, 9 figures, minor changes, version accepted for publication in PR

    Generation of static electricity during fluidisation of polyethylene and its elimination by air ionisation

    Get PDF
    International audienceStatic electricity is the cause of many problems in the process industries, in particular, when handling powders and granules. The methods usually used to reduce static electricity involve the addition of antistatic agents, the increase of relative humidity or ionisation. But these solutions can give rise to other problems. The purpose of this paper is, first, to study the kinetics of electrostatic charging of polyethylene granules and powders in a fluidised bed and, second, to study the elimination of the static electricity using the same particles with a special supersonic injector producing a neutral cloud of positive and negative ions. The experiments involve taking samples of particles at various times and various locations in the bed and measuring the charge-to-mass ratio by means of a Faraday pail connected to an electrometer. It is found that the electrostatic charge increases during fluidisation up to a limiting value. Concerning the charges elimination, it is shown that ions ejected from the eliminator cannot penetrate into the bulk of particles. Only the particles on the upper surface of the bed are discharged. Thus, the efficiency of the supersonic injector for overall charge neutralisation depends on the movement of the particles in the bed and, in particular, the rate of renewal of the upper surface of the fluidised bed

    Kaluza-Klein Dark Matter and Galactic Antiprotons

    Get PDF
    Extra dimensions offer new ways to address long-standing problems in beyond the standard model particle physics. In some classes of extra-dimensional models, the lightest Kaluza-Klein particle is a viable dark matter candidate. In this work, we study indirect detection of Kaluza-Klein dark matter via its annihilation into antiprotons. We use a sophisticated galactic cosmic ray diffusion model whose parameters are fully constrained by an extensive set of experimental data. We discuss how fluxes of cosmic antiprotons can be used to exclude low Kaluza-Klein masses.Comment: 14 pages, 7 figures, 3 table

    Spallation dominated propagation of Heavy Cosmic Rays and the Local Interstellar Medium (LISM)

    Full text link
    Measurements of ultra heavy nuclei at GeV/n energies in the galactic cosmic radiation address the question of the sources (nucleosynthetic s- and r-processes). As such, the determination of CR source abundances is a promising way to discriminate between existing nucleosynthesis models. For primary species (nuclei present and accelerated at sources), it is generally assumed that the relative propagated abundances, if they are close in mass, are not too different from their relative source abundances. Besides, the range of the correction factor associated to propagation has been estimated in weighted slab models only. Heavy CRs that are detected near Earth were accelerated from regions that are closer to us than were the light nuclei. Hence, the geometry of sources in the Solar neighbourhood, and as equally important, the geometry of gas in the same region, must be taken into account. In this paper, a two zone diffusion model is used, and as was previously investigated for radioactive species, we report here on the impact of the local interstellar medium (LISM) feature (under-dense medium over a scale ~100 pc) on primary and secondary stable nuclei propagated abundances. Going down to Fe nuclei, the connection between heavy and light abundances is also inspected. A general trend is found that decreases the UHCR source abundances relative to the HCR ones. This could have an impact on the level of r-process required to reproduce the data.Comment: 12 pages, 9 figures, accepted by A&A. Comparison with truncated weighted slab and discussion added. Figure 8 modified. New appendix on truncated weighted slab techniqu

    The effects of discreteness of galactic cosmic rays sources

    Full text link
    Most studies of GeV Galactic Cosmic Rays (GCR) nuclei assume a steady state/continuous distribution for the sources of cosmic rays, but this distribution is actually discrete in time and in space. The current progress in our understanding of cosmic ray physics (acceleration, propagation), the required consistency in explaining several GCRs manifestation (nuclei, γ\gamma,...) as well as the precision of present and future space missions (e.g. INTEGRAL, AMS, AGILE, GLAST) point towards the necessity to go beyond this approximation. A steady state semi-analytical model that describes well many nuclei data has been developed in the past years based on this approximation, as well as others. We wish to extend it to a time dependent version, including discrete sources. As a first step, the validity of several approximations of the model we use are checked to validate the approach: i) the effect of the radial variation of the interstellar gas density is inspected and ii) the effect of a specific modeling for the galactic wind (linear vs constant) is discussed. In a second step, the approximation of using continuous sources in space is considered. This is completed by a study of time discreteness through the time-dependent version of the propagation equation. A new analytical solution of this equation for instantaneous point-like sources, including the effect of escape, galactic wind and spallation, is presented. Application of time and space discretness to definite propagation conditions and realistic distributions of sources will be presented in a future paper.Comment: final version, 8 figures, accepted in ApJ. A misprint in fig 8 labels has been correcte

    Galactic secondary positron flux at the Earth

    Get PDF
    Secondary positrons are produced by spallation of cosmic rays within the interstellar gas. Measurements have been typically expressed in terms of the positron fraction, which exhibits an increase above 10 GeV. Many scenarios have been proposed to explain this feature, among them some additional primary positrons originating from dark matter annihilation in the Galaxy. The PAMELA satellite has provided high quality data that has enabled high accuracy statistical analyses to be made, showing that the increase in the positron fraction extends up to about 100 GeV. It is therefore of paramount importance to constrain theoretically the expected secondary positron flux to interpret the observations in an accurate way. We find the secondary positron flux to be reproduced well by the available observations, and to have theoretical uncertainties that we quantify to be as large as about one order of magnitude. We also discuss the positron fraction issue and find that our predictions may be consistent with the data taken before PAMELA. For PAMELA data, we find that an excess is probably present after considering uncertainties in the positron flux, although its amplitude depends strongly on the assumptions made in relation to the electron flux. By fitting the current electron data, we show that when considering a soft electron spectrum, the amplitude of the excess might be far lower than usually claimed. We provide fresh insights that may help to explain the positron data with or without new physical model ingredients. PAMELA observations and the forthcoming AMS-02 mission will allow stronger constraints to be aplaced on the cosmic--ray transport parameters, and are likely to reduce drastically the theoretical uncertainties.Comment: 15 pages, 12 figures. The recent PAMELA data on the positron fraction (arXiv:0810.4995) have been included and the ensuing discussion has been extended. Accepted version in A&

    Photometric selection of high-redshift type Ia supernovae

    Full text link
    We present a method for selecting high-redshift type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only 2-3 epochs of multi-band real-time photometry, is able to discriminate between SNe Ia and core collapse SNe. Furthermore, for the SNe Ia, the method accurately predicts the redshift, phase and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period May 2004 to January 2005 in the SNLS, 440 SN candidates were discovered of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test dataset, the selection technique correctly identifies 100% of the identified SNe II as non-SNe Ia with only a 1-2% false rejection rate. The predicted parameterization of the SNe Ia has a precision of |delta_z|/(1+z_spec)<0.09 in redshift, and +/- 2-3 rest-frame days in phase, providing invaluable information for planning spectroscopic follow-up observations. We also investigate any bias introduced by this selection method on the ability of surveys such as SNLS to measure cosmological parameters (e.g., w and omega matter), and find any effect to be negligible.Comment: Accepted for publication in A

    The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey

    Get PDF
    We compare the rise times of nearby and distant Type Ia supernovae (SNe Ia) as a test for evolution using 73 high-redshift spectroscopically-confirmed SNe Ia from the first two years of the five year Supernova Legacy Survey (SNLS) and published observations of nearby SN. Because of the ``rolling'' search nature of the SNLS, our measurement is approximately 6 times more precise than previous studies, allowing for a more sensitive test of evolution between nearby and distant supernovae. Adopting a simple t2t^2 early-time model (as in previous studies), we find that the rest-frame BB rise times for a fiducial SN Ia at high and low redshift are consistent, with values 19.100.17+0.18(stat)±0.2(syst)19.10^{+0.18}_{-0.17}({stat}) \pm 0.2 ({syst}) and 19.580.19+0.2219.58^{+0.22}_{-0.19} days, respectively; the statistical significance of this difference is only 1.4 \sg . The errors represent the uncertainty in the mean rather than any variation between individual SN. We also compare subsets of our high-redshift data set based on decline rate, host galaxy star formation rate, and redshift, finding no substantive evidence for any subsample dependence.Comment: Accepted for publication in AJ; minor changes (spelling and grammatical) to conform with published versio

    Gemini Spectroscopy of Supernovae from SNLS: Improving High Redshift SN Selection and Classification

    Full text link
    We present new techiques for improving the efficiency of supernova (SN) classification at high redshift using 64 candidates observed at Gemini North and South during the first year of the Supernova Legacy Survey (SNLS). The SNLS is an ongoing five year project with the goal of measuring the equation of state of Dark Energy by discovering and following over 700 high-redshift SNe Ia using data from the Canada-France-Hawaii Telescope Legacy Survey. We achieve an improvement in the SN Ia spectroscopic confirmation rate: at Gemini 71% of candidates are now confirmed as SNe Ia, compared to 54% using the methods of previous surveys. This is despite the comparatively high redshift of this sample, where the median SN Ia redshift is z=0.81 (0.155 <= z <= 1.01). These improvements were realized because we use the unprecedented color coverage and lightcurve sampling of the SNLS to predict whether a candidate is an SN Ia and estimate its redshift, before obtaining a spectrum, using a new technique called the "SN photo-z." In addition, we have improved techniques for galaxy subtraction and SN template chi^2 fitting, allowing us to identify candidates even when they are only 15% as bright as the host galaxy. The largest impediment to SN identification is found to be host galaxy contamination of the spectrum -- when the SN was at least as bright as the underlying host galaxy the target was identified more than 90% of the time. However, even SNe on bright host galaxies can be easily identified in good seeing conditions. When the image quality was better than 0.55 arcsec the candidate was identified 88% of the time. Over the five-year course of the survey, using the selection techniques presented here we will be able to add approximately 170 more confirmed SNe Ia than would be possible using previous methods.Comment: ApJ, accepted, 19 pages, 9 figure
    corecore