31 research outputs found

    Separation of <sup>3</sup>He and CH<sub>4</sub> signals on the Mid-Atlantic Ridge at 5°N and 51°N

    Get PDF
    Abiogenic methane may be produced in submarine hydrothermal systems by degassing of basalts or serpentinization of ultramafic outcrops. The latter process presumably releases little primordial helium and is therefore implicated by high CH4/3He ratios in vent fluids from the ultramafic-hosted Rainbow field and in methane plumes near ultramafic outcrops. We report the existence of depth-separated CH4 and 3He plumes in two segments of the Mid-Atlantic Ridge, at 5.4°N and 51°N. In both cases, the helium plume was deeper, near the valley floor, and the methane carbon isotope ratio was heavy (d13C ˜ -14%). The plumes may issue from separate vents, where the helium is discharged near the volcanic axis and the methane is generated by serpentinization higher on the valley wall. However, at the present time the locations of the vents that produce these plumes are not known. Using a one-pass model, we investigated whether separate venting could arise from heat conduction from a primary, helium-carrying, hydrothermal circulation to a second, shallower fracture loop intersecting ultramafic rock. The model results indicate that the flow rate through the secondary loop would have to be relatively low in order for it to stay warm enough for serpentinization to proceed. In this case, some of the exothermic heat production is lost by conduction, and the temperature increase in the circulating fluid is only a fraction of that expected from a water/rock ratio of 1:1

    Tritium tracers of rapid surface water ingression into arsenic-bearing aquifers in the Lower Mekong Basin, Cambodia

    Get PDF
    Arsenic (As) contamination of groundwaters in South and Southeast Asia is a major threat to public health in these areas. Understanding the source and age of the groundwaters is critically important to understanding the controls on As mobilization in these aquifers. Using tritium (3H) and noble gas (He and Ne) signatures, model groundwater ages and dominant hydrological controls were identified in a transect oriented broadly parallel to inferred groundwater flowpaths in Kandal Province, Cambodia in the lower Mekong Basin. Apparent 3H-3He ages showed that most groundwaters are modern (< 55 years), indicating relatively fast recharge even in the absence of large-scale groundwater abstraction. The age-depth relationship indicates a strong vertical component of groundwater flow and allows for recharge rates to be estimated. Vertical and horizontal flow velocities are heterogeneous and site-specific. The conceptual framework will be used to better understand As mobilization and subsequent transport with these and similar aquifers

    Using 18O/2H, 3H/3He, 85Kr and CFCs to determine mean residence times and water origin in the Grazer and Leibnitzer Feld groundwater bodies (Austria)

    Get PDF
    Two groundwater bodies, Grazer Feld and Leibnitzer Feld, with surface areas of 166 and 103 km2 respectively are characterised for the first time by measuring the combination of δ18O/δ2H, 3H/3He, 85Kr, CFC-11, CFC-12 and hydrochemistry in 34 monitoring wells in 2009/2010. The timescales of groundwater recharge have been characterised by 131 δ18O measurements of well and surface water sampled on a seasonal basis. Most monitoring wells show a seasonal variation or indicate variable contributions of the main river Mur (0–30%, max. 70%) and/or other rivers having their recharge areas in higher altitudes. Combined δ18O/δ2H-measurements indicate that 65–75% of groundwater recharge in the unusual wet year of 2009 was from precipitation in the summer based on values from the Graz meteorological station. Monitoring wells downstream of gravel pit lakes show a clear evaporation trend. A boron–nitrate differentiation plot shows more frequent boron-rich water in the more urbanised Grazer Feld and more frequent nitrate-rich water in the more agricultural used Leibnitzer Feld indicating that a some of the nitrate load in the Grazer Feld comes from urban sewer water. Several lumped parameter models based on tritium input data from Graz and monthly data from the river Mur (Spielfeld) since 1977 yield a Mean Residence Time (MRT) for the Mur-water itself between 3 and 4 years in this area. Data from δ18O, 3H/3He measurements at the Wagna lysimeter station supports the conclusion that 90% of the groundwaters in the Grazer Feld and 73% in the Leibnitzer Feld have MRTs of 20 m) with relative thicker unsaturated zones. The young MRT of groundwater from two monitoring wells in the Leibnitzer Feld was confirmed by 85Kr-measurements. Most CFC-11 and CFC-12 concentrations in the groundwater exceed the equilibration concentrations of modern concentrations in water and are therefore unsuitable for dating purposes. An enrichment factor up to 100 compared to atmospheric equilibrium concentrations and the obvious correlation of CFC-12 with SO4, Na, Cl and B in the ground waters of the Grazer Feld suggest that waste water in contact with CFC-containing material above and below ground is the source for the contamination. The dominance of very young groundwater (<5 years) indicates a recent origin of the contamination by nitrate and many other components observed in parts of the groundwater bodies. Rapid measures to reduce those sources are needed to mitigate against further deterioration of these waters

    On the Propagation of Reaction Fronts in a Sandy Aquifer Over 20+ Years: Lessons From a Test Site in Northwestern Germany

    Get PDF
    Despite reduction measures, nitrate and aluminum concentrations remain high in aquifers in northwestern Europe. To evaluate the effectiveness of groundwater protection policies, the long-term fate of these contaminants in groundwater needs to be understood. The groundwater catchment of the Haren water works, NW Germany, was characterized hydrogeochemically in the late 1990s, which provides an opportunity to study the solute fronts over a two-decade period and conduct a post-audit of the predicted front movement. Results indicate that, despite a significant reduction of the atmospheric acid loads, the acidification of soil and groundwater at the forest site persists. Removal of sorbed aluminum is required to induce a noticeable improvement, which will take at least several decades. The unexpected appearance of nitrate at the site, caused by a land use change in 1998, highlights the need for long-term monitoring. Core data at the agricultural site show that the denitrification front has moved very little between 1998 and 2017, in accordance with previous forecasts. Denitrification by-products, mainly sulfate and nitrogen, have migrated from the upper into the lower aquifer. A reactive transport model demonstrated how the link between the regional groundwater flow, pyrite oxidation, and the temporal variability of the nitrate concentration in recharge water, as reconstructed from age tracers, result in the observed vertical distribution of sulfate and nitrogen. This study demonstrates how long-term monitoring, aided by model-based data interpretation, can be used to successfully study and predict the fate of contaminants in groundwater. © 2021. The Authors

    Dual in-aquifer and near surface processes drive arsenic mobilization in Cambodian groundwaters

    Get PDF
    Millions of people globally, and particularly in South and Southeast Asia, face chronic exposure to arsenic from reducing groundwater in which arsenic release is widely attributed to the reductive dissolution of arsenic-bearing iron minerals, driven by metal reducing bacteria using bioavailable organic matter as an electron donor. However, the nature of the organic matter implicated in arsenic mobilization, and the location within the subsurface where these processes occur, remains debated. In a high resolution study of a largely pristine, shallow aquifer in Kandal Province, Cambodia, we have used a complementary suite of geochemical tracers (including 14C, 3H, 3He, 4He, Ne, δ18O, δD, CFCs and SF6) to study the evolution in arsenic-prone shallow reducing groundwaters along dominant flow paths. The observation of widespread apparent 3H-3He ages of 30 m, and the relationships between age-related tracers and arsenic suggest that this surface-derived organic matter is likely to contribute to in-aquifer arsenic mobilization. A strong relationship between 3H-3He age and depth suggests the dominance of a vertical hydrological control with an overall vertical flow velocity of ~0.4 ± 0.1 m·yr−1 across the field area. A calculated overall groundwater arsenic accumulation rate of ~0.08 ± 0.03 μM·yr−1 is broadly comparable to previous estimates from other researchers for similar reducing aquifers in Bangladesh. Although apparent arsenic groundwater accumulation rates varied significantly with site (e.g. between sand versus clay dominated sequences), rates are generally highest near the surface, perhaps reflecting the proximity to the redox cline and/or depth-dependent characteristics of the OM pool, and confounded by localized processes such as continued in-aquifer mobilization, sorption/desorption, and methanogenesis
    corecore