
 Procedia Earth and Planetary Science   17  ( 2017 )  845 – 848 

Available online at www.sciencedirect.com

1878-5220 © 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of WRI-15
doi: 10.1016/j.proeps.2017.01.055 

ScienceDirect

15th Water-Rock Interaction International Symposium, WRI-15 

Tritium Tracers of Rapid Surface Water Ingression into Arsenic-
Bearing Aquifers in the Lower Mekong Basin, Cambodia 

Laura A Richardsa,1, Jürgen Sültenfußb, Christopher J Ballentinec, Daniel Magnonea, Bart 
E van Dongena, Chansopheaktra Sovannd, David A Polyaa 

a School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of 
Manchester, Manchester M13 9PL, UK 

b Institute of Environmental Physics, University of Bremen, Bremen 28359, Germany 
c Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK 

d Department of Environmental Sciences, Royal University of Phnom Penh; Cambodia  

Abstract 

Arsenic (As) contamination of groundwaters in South and Southeast Asia is a major threat to public health in these areas. 
Understanding the source and age of the groundwaters is critically important to understanding the controls on As mobilization in 
these aquifers. Using tritium (3H) and noble gas (He and Ne) signatures, model groundwater ages and dominant hydrological 
controls were identified in a transect oriented broadly parallel to inferred groundwater flowpaths in Kandal Province, Cambodia 
in the lower Mekong Basin. Apparent 3H-3He ages showed that most groundwaters are modern (< 55 years), indicating relatively 
fast recharge even in the absence of large-scale groundwater abstraction. The age-depth relationship indicates a strong vertical 
component of groundwater flow and allows for recharge rates to be estimated. Vertical and horizontal flow velocities are 
heterogeneous and site-specific. The conceptual framework will be used to better understand As mobilization and subsequent 
transport with these and similar aquifers. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of WRI-15. 
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1. Introduction 

Millions of people in South/Southeast Asia chronically consume groundwater containing dangerous 
concentrations of naturally-occurring As1-4. As release in shallow aquifers in this region is widely attributed to the
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reductive dissolution of As-bearing Fe(III) minerals5, driven by metal reducing bacteria and bioavailable organic 
matter2,5-7. The nature of the organic matter implicated in As mobilization is generally thought to derive, in some 
proportion, from (i) plant-derived organic matter internal to aquifers8,9; (ii) external, modern surface-derived organic 
matter, largely from ponds, rivers and rice paddies10-18; and/or (iii) petroleum-derived hydrocarbons7,19,20. Debates 
surrounding the sub-surface location where As mobilization takes place and the subsequent controls on As 
mobility10,14,15,17, 21-25 are intrinsically linked to the type and amount of the organic matter implicated in As release7-

10,14,15,19,20,26. Determining the relative importance of these various inputs is essential in predicting future changes in 
As hazard10,15,27. The aim is to characterize the 3H and noble gas (He and Ne) isotopic signature of As-affected 
groundwater to (i) determine groundwater age; (ii) examine dominant hydrological controls; and (iii) assess local 
heterogeneity, which ultimately may affect As mobilization and transport in these aquifers. 

2. Methods and Materials 

The field sites are located in Kien Svay, Kandal Province, Cambodia, an area heavily affected by groundwater 
As11,12,14,15,19,27-30 and representative of pre-development conditions.  Groundwater samples (6 - 45 m deep) were 
collected from flushed and developed wells31 pre- (May – June 2014) and post-monsoon (Nov – Dec 2014). In-situ 
measurements of basic groundwater parameters and subsequent analysis of geochemical composition was 
conducted31. Duplicate samples for 3H analysis were collected in 1 L argon filled amber glass bottles. Duplicate 
samples for He and Ne analysis were collected in flushed soft copper tubes.  Analysis of 3H, He and Ne isotopes was 
conducted at the “Helis – Helium Isotopes Studies Bremen” Noble Gas Laboratory (Institute of Environmental 
Physics, University of Bremen, Germany)32, with apparent 3H-3He ages derived using previous methods33. 

3. Results and Discussion 

3.1. 3H Concentration of Groundwater and Surface Water 

3H measurements of groundwaters, river water and rain range from 0.04 to 3.6 TU (Fig. 1A). Relatively high pre-
monsoon 3H in the Mekong suggests an additional and variable upstream source for 3H, likely from higher altitude 
Himalayan precipitation34. Concentrations of ‘stable tritium’ (the sum of 3H and 3Hetri) are similar to the input 
function for Bangkok precipitation (Fig. 1B)35. The similarity in independent datasets provides verification of 3H 
sampling and analysis. For all samples (except ≥ 30 m depth at LR09), the ‘stable tritium’ follows the 3H input 
function for Bangkok closely, indicating that no old 3H-free water is admixed with young groundwater at most sites. 

 

Fig. 1. (A) 3H for pre-/post-monsoon groundwaters, Mekong River and rain. 3H was > 0.02 TU in all groundwater samples; (B) ‘Stable tritium’ 
(the sum of 3H and 3Hetri) values and the input function for Bangkok precipitation (WMO Code 484550035) against infiltration date. 

3.2. Apparent 3H-3He Ages of Groundwater and Surface Water 

Apparent 3H-3He ages show distinct spatial patterns (Fig. 2A). Ages are mostly modern (e.g. < 55 years in age), 
with the exception of two sites (LR09-30 and LR01-45). Age increases with depth at every site, with the exception 
of site LR09. For the same depth there is age variation on the order of 10 – 20 years. The spatial variation of 
apparent ages allows for estimates of groundwater flow velocities. The overall increase in 3H-3He age with depth 
(Fig. 2B) has an overall gradient representing mean vertical flow velocity of 0.5 ± 0.1 m.yr-1 (t(24) = 5.62, p = 
8.7·10-6 for ages < 55 years). Depth profiles at specific sites show localized and heterogeneous vertical flow 
velocities. The site-specific variability gives rise to the identification of relatively rapid recharge zones. 
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Fig. 2. (A) Apparent 3H-3He age (in years, 2014 basis) with increasing perpendicular distance from the Bassac River. Blue, labelled ages are pre-
monsoon (orange post-monsoon). Dashed lines indicate ages > 55 years. The contour represents grain size (lighter colors are sandier); (B) 

Apparent 3H-3He age versus depth. 

3.3. Implications on Arsenic Release 

As concentrations are typically lower in very young waters and increase in deeper, older waters (Fig. 3A). This 
relationship allows for the calculation of an overall As loading rate of 6.3 ± 2.6 µg.L-1.yr-1 (t(24) = 2.40, p = 
0.0246). As loading is heterogeneous and site-specific, and is attributed in part to changes in lithology and the likely 
presence of bio-available carbon. Depth profiles allow for examination of the association of As with 3H, noble gases, 
Eh and dissolved organic carbon (DOC) (Fig. 3B). In addition to the general correlation of As with depth and 3H-
3He age, and the inverse As/Eh correlation, 4Herad increases with depth which is consistent with age. 

 
 
 
 
 
 
 
 

Fig. 3.  (A) As versus apparent 3H-3He age (basis 2014).  Samples in the dashed circle are > 55 years old; (B) Depth profiles for site LR01. 

4. Conclusions 

The 3H composition of As-bearing groundwater was used to determine groundwater ages along groundwater 
flowpaths. Apparent 3H-3He ages showed that most groundwaters are modern and younger than previously 
considered. Consistency of ‘stable tritium’ with the input function for Bangkok precipitation provides independent 
verification of analysis. A strong depth-age relationship suggests the dominance of a vertical hydrological control. 
Ages can be used to estimate flow velocities and heterogeneity. Such hydrological controls provide the conceptual 
framework for an improved groundwater model and may affect As mobilization/transport with the aquifer. 
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