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2H, 3H/3He, 85Kr, CFC-11, CFC-12 and hydrochemistry in 34 monitoring wells in 2009/10. 

The timescales of groundwater recharge have been characterized by 131 δ18O measurements 

of well and surface water sampled on a seasonal basis. Most monitoring wells show a 

seasonal variation or indicate variable contributions of the main river Mur (0 – 30%, max. 

70%) and/or other rivers having their recharge areas in higher altitudes. Combined δ18O/δ 2H-

measurements indicate that 65-75% of groundwater recharge in the unusual wet year of 2009 

was from precipitation in the summer based on values from the Graz meteorological station. 

Monitoring wells downstream of gravel pit lakes show a clear evaporation trend. 

A boron – nitrate differentiation plot shows more frequent boron-rich water in the more 

urbanized Grazer Feld and more frequent nitrate-rich water in the more agricultural used 

Leibnitzer Feld indicating that a some of the nitrate load in the Grazer Feld comes from urban 

sewer water. Several lumped parameter models based on tritium input data from Graz and 

monthly data from the river Mur (Spielfeld) since 1977 yield a Mean Residence Time (MRT) 

for the Mur-water itself between 3 and 4 years in this area. Data from δ18O, 3H/3He 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive

https://core.ac.uk/display/33451832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

measurements at the Wagna lysimeter station supports the conclusion that 90% of the 

groundwaters in the Grazer Feld and 73% in the Leibnitzer Feld have MRTs of < 5 years. 

Only in a few groundwaters were MRTs of 6 - 10 or 11 – 25 years as a result of either a long-

distance water inflow in the basins or due to longer flow path in somewhat deeper wells (> 

20m) with relative thicker unsaturated zones. The young MRT of groundwater from two 

monitoring wells in the Leibnitzer Feld was confirmed by 85Kr-measurements. Most CFC-11 

and CFC-12 concentrations in the groundwater exceed the equilibration concentrations of 

modern concentrations in water and are therefore unsuitable for dating purposes. An 

enrichment factor up to 100 compared to atmospheric equilibrium concentrations and the 

obvious correlation of CFC-12 with SO4, Na, Cl and B in the ground waters of the Grazer 

Feld suggest that waste water in contact with CFC-containing material above and below 

ground is the source for the contamination. The dominance of very young groundwater (< 5 

years) indicates a recent origin of the contamination by nitrate and many other components 

observed in parts of the groundwater bodies. Rapid measures to reduce those sources are 

needed to mitigate against further deterioration of these waters. 
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Abstract 

Two groundwater bodies, Grazer Feld and Leibnitzer Feld, with surface areas of 166 and 103 

km2 respectively are characterized for the first time by measuring the combination of δ18O/δ 

2H, 3H/3He, 85Kr, CFC-11, CFC-12 and hydrochemistry in 34 monitoring wells in 2009/10. 

The timescales of groundwater recharge have been characterized by 131 δ18O measurements 

of well and surface water sampled on a seasonal basis. Most monitoring wells show a 

seasonal variation or indicate variable contributions of the main river Mur (0 – 30%, max. 

70%) and/or other rivers having their recharge areas in higher altitudes. Combined δ18O/δ 2H-

measurements indicate that 65-75% of groundwater recharge in the unusual wet year of 2009 

was from precipitation in the summer based on values from the Graz meteorological station. 

Monitoring wells downstream of gravel pit lakes show a clear evaporation trend. 

A boron – nitrate differentiation plot shows more frequent boron-rich water in the more 

urbanized Grazer Feld and more frequent nitrate-rich water in the more agricultural used 

Leibnitzer Feld indicating that a some of the nitrate load in the Grazer Feld comes from urban 

sewer water. Several lumped parameter models based on tritium input data from Graz and 

monthly data from the river Mur (Spielfeld) since 1977 yield a Mean Residence Time (MRT) 

for the Mur-water itself between 3 and 4 years in this area. Data from δ18O, 3H/3He 

measurements at the Wagna lysimeter station supports the conclusion that 90% of the 

groundwaters in the Grazer Feld and 73% in the Leibnitzer Feld have MRTs of < 5 years. 

Only in a few groundwaters were MRTs of 6 - 10 or 11 – 25 years as a result of either a long-

distance water inflow in the basins or due to longer flow path in somewhat deeper wells (> 

20m) with relative thicker unsaturated zones. The young MRT of groundwater from two 

monitoring wells in the Leibnitzer Feld was confirmed by 85Kr-measurements. Most CFC-11 

and CFC-12 concentrations in the groundwater exceed the equilibration concentrations of 

modern concentrations in water and are therefore unsuitable for dating purposes. An 
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enrichment factor up to 100 compared to atmospheric equilibrium concentrations and the 

obvious correlation of CFC-12 with SO4, Na, Cl and B in the ground waters of the Grazer 

Feld suggest that waste water in contact with CFC-containing material above and below 

ground is the source for the contamination. The dominance of very young groundwater (< 5 

years) indicates a recent origin of the contamination by nitrate and many other components 

observed in parts of the groundwater bodies. Rapid measures to reduce those sources are 

needed to mitigate against further deterioration of these waters. 

1. Introduction 

The Water Framework Directive (WFD) and the Austrian Water Act (WRG) require a ‘good 

status’ of groundwater by 2015. Therefore, remediation of groundwater bodies and the ability 

to estimate the timescales over which improvements in water quality are achieved is of utmost 

importance. The term groundwater body is used here as a hydrogeologically distinct volume 

of groundwater within an aquifer or aquifers (Directive 2000). 

For drinking water supplies and other uses of groundwater where the recharge area is 

dominated by agricultural or urban land use, high nitrate and other pollutant concentrations 

are of major concern. Nitrate reaches groundwater by infiltration from soils under intensive 

agricultural use as well as from other sources. 

The Mean Residence Time (MRT) describes the transport time of a water between infiltration 

and the moment of sampling or natural discharge. Such a discharge area or point can be 

surface water, a spring, a monitoring well or an extraction borehole. The MRT of groundwater 

is an important parameter of the hydrological cycle and is related to the groundwater recharge 

rate, advective transport and the degree of water extraction. By understanding the MRT, 

measures to reduce the input of pollutants such as nutrients, pesticides and pharmaceuticals 
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from agriculture and waste waters, can be put in context so that realistic timescales for 

improvement in water quality can be estimated. 

The combination of different isotope measurements (oxygen-18, deuterium, tritium, 

tritium/helium-3, krypton-85 etc.), gas tracer measurements (CFCs, SF6 etc.) allow for an 

assessment of the Mean Residence Time (MRT) of a groundwater. For relatively deep 

unsaturated zones the heavier gases krypton-85, CFC and SF6 can be retarded as function of 

thickness and permeability of the unsaturated zone ( Cook and Solomon, 1995). 

Tritium/helium-3 records the time in the saturated zone only because of gas exchange 

between the unsaturated zone and the atmosphere (Solomon and Sudicky 1991). However, in 

some respects 85Kr might be considered an ideal dating tracer, since as a noble gas no 

chemical reactions or adsorption processes can change its concentration in groundwater 

(Althaus et al. 2009). Since ratios of isotopes from the same element and with small relative 

mass difference are measured (85Kr/Krtot), the method is insensitive to degassing during or 

before sampling or to variations in recharge temperature. 

Few studies exist in young groundwater (< 10 yrs.) where whole groundwater bodies are 

covered with information about their MRT. Taylor et al. (1992), Ekwurzel et al. (1994), 

Michel (2004), Phillips and Castro (2005), Phillips and Castro (2005) used 18O variation, 3H, 

3H/3He, 85Kr, CFC-11 and CFC-12 in different groundwater bodies of different geology and 

size. Visser et al. (2007) used 3H/3He-data to demonstrate a trend reversal of agricultural 

pollutants based on the time of groundwater recharge. 

The groundwater bodies in Grazer Feld and Leibnitzer Feld stretching along the river Mur in 

Austria (Fig. 1) were investigated. The sites are of particular interest because of evidence of 

urban impact from the city of Graz as well as agricultural impact from extensive farming of 

maize and oil seeds. Data from monitoring wells of the Austrian Quality Monitoring System 

(GZÜV, BGBL. II NR. 479/2006) show suspected agricultural pollution from high 
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concentrations of nitrate and historic residues of atrazine together with its degradation 

products, and urban contamination from chlorinated solvents such as trichloroethene and 

tetrachloroethene. In addition, fairly recent numerical groundwater models (Harum et al., 

2011; Fank, 1999) offer the possibility to evaluate their results  using isotope data and tracer 

gas results. Some background 18O-data were reported already by Harum et al. (2011) from the 

Grazer Feld and additional 18O/2H, 3H-data from the Leibnitzer Feld have been previously 

collated (Papesch and Rank 1995). 

The main purpose of this study was to obtain a statistical overview of the MRTs in the first 

few metres (0 – 10 m) of the saturated zone which is normally mixed by abstraction wells. 

This part of the aquifer is primarily monitored in the Quality Monitoring program (BGBL 

2006) and is most sensitive to potential groundwater contamination.  

To obtain further understanding of the processes along the vertical distribution in deeper parts 

of the saturated zone (>15 m) some deeper monitoring wells were sampled. In addition, a 

brief characterisation and a hydrogeological conceptual model of each investigated 

groundwater body has been compiled.  

 

2. Methodologies 

2.1Field Sampling 

Eighteen monitoring sites in the Grazer Feld and 13 at the Leibnitzer Feld of the Austrian 

Groundwater Quality Monitoring System (GZÜV, BGBL 2006) were sampled four times a 

year for δ 18O and 2H analyses mostly during 2009 (Tab. 1 - 5, Fig. 1 – 4). Nearly all the 

samples were taken with a submersible pump (Grundfos MP1). 3H/3He and CFCs were 

sampled once during summer 2009 from the same monitoring sites (Tab. 3 and 4). Samples 

for He isotope analysis were taken in clamped copper tube sample as described by Stute and 
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Schlosser (2000) and samples for CFC- analysis were filled under water in glass bottles 

(Oster, 1994). In addition, one deeper well was sampled simultaneously at depths of 13 m and 

27 m with two pumps separated by inflatable packers in Gries (Graz), and the groundwater 

well (“Sonde II”) close to the lysimeter station Wagna (Leibnitzer Feld) was also sampled in 

2009 and 2011 (Tab. 1, Fig. 2 - 3). 

For all the samples water temperature, conductivity, pH and dissolved oxygen content (WTW 

Multiline P4-meter) was measured after calibration in the field.  

 

2.2 Analysis of oxygen-18, hydrogen-2, tritium/helium-3, krypton-85, and CFC 

All stable isotope samples were analysed by laser-spectroscopy (CRDS – System, Types 

L1102-i Picarro) and tritium by liquid scintillation (LSC) by the Austrian Institute of 

Technology (AIT, Tulln). Noble gases 3He, 4He and 20Ne were measured at the Institute of 

Environmental Physics (IUP), University of Bremen, Germany. Water for CFC- analysis was 

analysed at the British Geological Survey (BGS). 85Kr was collected by degassing of about 

200L of water and measured by gas proportional counting at the University of Bern (Althaus 

et al., 2009; Purtschert et al. 2013). The long term standard deviation of ratios and 

concentrations of ∂18O, ∂2H, 3H, 3He, 4He, 20Ne is better than 0.1‰, 1‰, 0.5 TU and 1% 

(noble gas isotopes). The precision of CFC and 85Kr analyses is 4-5%. More analytical details 

are given by Kralik et al., 2011; Sültenfuß et al. 2009; Gooddy et al., 2006. 

All tritium model ages were calculated by lumped parameter models (Maloszewski and Zuber 

1996) using input data from the Graz precipitation station (ANIP 2012). 

 

3. Hydrogeology and Climate of the Grazer and Leibnitzer Feld 

3.1 Aquifer geometry, flow velocity and numeric models 



9 

 

The area of the groundwater body Grazer Feld encompasses 166 km2 and stretches N – S 

from the city area of Graz to the mouth of the river Kainach along the river Mur (Fig. 1 and 

2). The groundwater body Leibnitzer Feld continues from the mouth of the river Kainach 

south to the border of the Republic of Slovenia east of Strass (Fig. 1 and 3) and covers an area 

of roughly 100 km2. In the South, the Leibnitzer Feld passes into the groundwater body 

“Unteres Murtal” (no clear hydrogeological border). Topography varies between 468 and 157 

m above sea level.  

The basin of Grazer Feld and the Leibnitzer Feld are both filled with fluvial Quaternary gravel 

and sand with relatively high permeability. Due to their relative thickness these sediments 

represent an important aquifer which is used for the drinking water supply for the city of Graz 

(270,000 inhabitants) and other smaller communities in both basins. The aquifer basically 

consists of Würm gravel terraces and Holocene floodplain areas along the rivers, but some 

terraces from higher Riss are preserved at the western border of the aquifer in the Grazer Feld 

and at the south-eastern border of the Leibnitzer Feld. 

The underlying aquiclude is in both groundwater bodies generally formed by less permeable 

Tertiary sediments. The boundaries of the Graz basin, however, are formed in the Northern 

part by Palaeozoic limestone, dolomite and schist. Groundwater recharge is provided mainly 

by precipitation, as well as bank infiltration of the river Mur in the Northern part of both 

groundwater bodies and partly by infiltration from small tributary streams. Groundwater flow 

is generally directed from North to South (Fig. 2 and 3). Infiltrating water from the Western 

and Eastern boundaries is flowing towards the river Mur. In the Southern parts of the basins 

groundwater frequently discharges into the rivers. 

In general, groundwater flow along the Mur river is also strongly influenced by several 

hydropower plants where infiltration and discharge processes are dominated by the level of 

impounded river water. 
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Land use is dominated by the urban city of Graz in the Northern part and by agriculture in the 

Southern part. The Schwarzl (Fig. 2) and Tillmitsch gravel pit lakes (Fig. 3) are filled with 

groundwater and do significantly reduce nitrate concentrations in the groundwater due to the 

high nitrogen consuming capacity of naturally occurring macrophytes. 

The thickness of the aquifer in the Grazer Feld is in the range of 15 – 25 m in the North and at 

the main terraces 1 – 15 m. The thickest part is in the area of a deeper trough down to 32 m. 

To the South the thickness decreases to 16 – 18 m. The depth to groundwater varies between 

>15 m on the terraces down to 1 – 2 m in the Southern floodplain area. 

The flow conditions within the aquifer are well known due to a well calibrated unsteady state 

model of groundwater flow (Harum et al., 2011). The modelled groundwater distance velocity 

ranges between 4 and 9 m/d for the most parts of the aquifer. 

On the basis of the numerical model of groundwater flow (Feflow® software) the mean 

residence time in the saturated zone from the border of the groundwater body has been 

calculated for 4 sampling points in the range of 1.2 – 2.5 years. The thickness of the saturated 

aquifer in most parts of the Leibnitzer Feld varies between 1 and 10 m. The average 

groundwater thickness is approximately 3.5 m for the area of the lower Würm terrace (ranging 

between 3-8 m). Within the floodplain areas along Sulm River and the Southern part of the 

Mur river the groundwater depth decreases to below 2 m. Groundwater depths at the higher 

Riss terraces (N of well No. 20153) are between 7 and 9 m (Fank, 1999). The natural 

temporal fluctuation of the water table is 2.5 m, but no predominant inter-annual periods for 

groundwater recharge exist in the long term (evaluated at the Wagna lysimeter station, Fig. 3).  

Infiltration- from and discharge to rivers affects the groundwater quantity and quality (e.g., 

dilution effects) significantly in several sub-regions of the Leibnitzer Feld. In the north 

eastern part, infiltrating water coming from the Tertiary hills also contributes to groundwater 
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recharge. Soil particles are washed off and transferred into the aquifer and decrease hydraulic 

conductivity in this area (Fank, 1999).  

In the region south of the Wagna Lysimeter station, the hydraulic gradients decrease and 

groundwater discharges into the Sulm or the Mur River. The area south-east of the Mur river 

(where Südbeton well is located; Fig.3) is affected by infiltrating water coming from the 

north-east. Fank (1999) describes a very homogeneous groundwater velocity (from 2.5 to 3 

m/d) for the area of Würm terraces. Higher velocities up to 5 m/d occur along the outer border 

where the slope of the Tertiary basement is steeper. In the south-eastern part of the Leibnitzer 

Feld groundwater velocity may vary significantly between 1.3 and 8 m/d (Fank, 1999). 

According to a coupled unsaturated/saturated transient model simulation (Klammler et al., 

2013) a maximum residence time in groundwater of approximately seven years was 

determined calculating over the distance from Lebring in the North to the confluence of the 

rivers Sulm and Mur South of the Wagna Lysimeter station.  

Papesch and Rank (1995) analysed 1989-1990 18O/2H and 3H from roughly 50 domestic wells 

and surface waters. From the amplitude and phase shift of 18O/ 2H-variations they concluded 

that the residence time of the  groundwater is relatively short in the range of 4-5 years. 

Downstream of the gravel pit lakes an 18O/ 2H-enrichment in the groundwater due to summer 

evaporation in the lakes has been  observed. However, from the 3H-measurements some older 

groundwater up to 20 years and in one case in the NW even older than 40 years was found. 

3.2 Long term climatic situation 

Both basins are situated in a moderate climate zone, marked by cold winters (lows of -10 °C) 

and hot summers (highs of 30 °C) with an average temperature of roughly 9° C. The annual 

precipitation ranges between 800 – 1000 mm/year. The monthly mean precipitation is low 

during winter month (22 to 42 mm/month) and are high during June to August (130 to 150 
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mm/month). Groundwater recharge is approximately 1/3 of the precipitation and generally 

higher during autumn (Harum et al. 2011; Fank 1999). 

4. Results 

The depth to the water table in the investigated monitoring sites varies between 1.3 – 15 m 

(mean 6 m) and 1.7 – 12.4 m (mean 5.4 m) below ground in the Grazer Feld and in the 

Leibnitzer Feld, respectively. In early 2009 the water table was generally 0.5 – 2 m higher 

compared to the long-time average due to 50% higher precipitation. The depth of the 

monitoring and production wells ranges between 6 – 43 m (mean 15 m) and 3.5 – 18 m (mean 

8 m) in the two groundwater bodies reaching in most cases the Tertiary aquiclude. 7-9 of 19 

monitoring wells and 10 of the sites are production wells for irrigation and industrial use in 

the Grazer and Leibnitzer Feld. Most of the wells have screens over the whole water column 

ranging between 1 – 22 m (mean 8.6 m) and 0.2 – 7.8 (mean 2.7 m) in the two groundwater 

bodies. This decrease in depth reflects the general trend of decreasing aquifer thickness from 

the Grazer groundwater body in the North to the Leibnitzer Feld in the South as well as a 

decrease in aquifer thickness from the river forests in the centre towards the lateral terraces of 

both fluvial aquifers. 

The δ18O results range from -10.5 to -6.8 (mean -8.7) and from -9.5 to -5.2 (mean -8.8) (Tab. 

3 -4, Fig. 2 – 4). The measured δ2H values are well correlated to the δ18O-values forming a 

local precipitation line (δ 2H =7.84xδ18O+7.19) in agreement with the long-term precipitation 

station at the University of Graz (ANIP 2012). The monitoring wells downstream of the 

Schwarzl (Grazer Feld) and the Tillmitsch gravel pit lakes (Leibnitzer Feld) show isotope data 

evolving along an evaporation line (δ2H =4.38xδ18O-22.14) (Fig. 4). 

Based on the main hydrochemistry data of the Austrian Water Quality Monitoring System 

(H2O Fachdatenbank, 2009) and some additional chemical analyses (Tab.2) the majority of 

the groundwater is of alkaline earth-carbonate type (Piper, 1944; Furtak and Langguth, 1967; 
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Kralik et al., 2005). The groundwater of the Grazer Feld is dominated by the Ca-Mg-

carbonate subtype whereas the groundwater of the Leibnitzer Feld is dominated by the Ca-

carbonate subtype. Seven groundwater monitoring sites on the Westside of the Grazer Feld 

and on the Southeast side of the Leibnitzer Feld contain water of the alkaline earth-sulphate or 

alkaline earth-alkali-sulphate type (Fig. 5). 

The electric conductivity ranges between 219 – 1150 µS/cm and 360 - 888 µS/cm (mean 723 

and 621 µS/cm) in both groundwater bodies. Nitrate ranges between 6 – 113 mg/L and 12 – 

91 mg/L (mean 39 and 52 mg/L) and boron between 6 – 235 µg/L as well as 6 – 82 µg/L 

(mean 63 and 28 µg/L) in the Grazer and in the Leibnitzer groundwater body, respectively. 

Boron rich groundwater is more frequent in the Grazer Feld and in contrast groundwater 

highly enriched in nitrate is more common in the Leibnitzer Feld (Fig. 6). 

The tritium concentration (Tab. 3 and 4) varies from 6.0 to 10.1 tritium units [TU] (mean 8.0 

TU) and 7.1 to 11.7 TU (mean 8.5 TU) in the Grazer Feld and Leibnitzer Feld, respectively. 

The mean tritium concentration in both groundwater bodies is somewhat lower than the 

weighted mean precipitation of 9.7 TU (Fig. 7).  

The mean gas concentration of 3He, 4He and 3He from tritium decay 3Hetrit are 7.55 (7.71) 

10-11, 5.39 (6.22) 10-5 cc STP/kg and 1.25 (0.4) TU in the two groundwater bodies, 

respectively. The gas samples have generally small amounts of excess air, as indicated by 

Delta-Neon (ΔNe) ranging from 1.7 – 30 % and 11-42% in both groundwater bodies. To 

calculate the excess of Ne from the solubility equilibrium concentration it was assumed that 

the recharge elevation and temperature is similar to the topographic elevation of the sampling 

sites (Grazer Feld 295 – 360 m; Leibnitzer Feld 295 – 360 m) and the recharge temperature 

corresponds to the mean air temperature over the last 10 years (10.6 °C). 
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The mean CFC-11 and CFC-12 concentrations vary from 0.9 to 132 (1.4 – 68), 1.3 to 214 (0.1 

- 36) pmol/kg in the Grazer and Leibnitzer Feld, respectively (Tab. 3 and 4, Fig. 7). Nearly all 

CFC-data indicate considerable contamination compared to the atmospheric equilibrium 

concentrations which could not be assigned to excess atmospheric air. These data were not 

used for dating purposes. 

As an additional age constraint, two monitoring wells were sampled for 85Kr (Tab. 5). The 

local modern atmospheric 85Kr level was determined by means of an atmospheric air sample 

and a sample from a gravel (fishing) pit lake. The latter represents a temporally averaged 

input value over timescales given by the gas exchange dynamics between the pond water and 

the atmosphere (days-weeks). The 85Kr activities in the groundwater samples ranged between 

67.5-75.5 dpm/cc Kr and were very similar to the atmospheric input activity indicating short 

groundwater residence times (<3 years). 

Based on the variation in 18O and apparent 3H/3He ages in 19 of the 21 investigated 

monitoring sites (90%) in the Grazer Feld, MRT’s of less than 5 years were determined. One 

sample from a site close to Wundschuh (No. 656342) was11 – 25 years old. The deeper part 

(13 – 27 m) of the drill-hole KB01/09 (Gries /Graz) yields groundwater with a MRT in the 

range of 6 – 10 years. In the Leibnitzer Feld 11 of the 15 investigated monitoring sites (73%) 

are younger than 5 years. Only the monitoring sites in area of St. Georgen an der Stiefing (No. 

331082) and Wildon (No. 40102) in the North and St. Veit am Vogau in the South (No. 

36322; 36032) are somewhat older in the range of 6 – 10 years. 

 

5. Discussion 

5.1. Origin of waters 
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Monthly precipitation samples for stable isotopes have been determined from the 

meteorological station at the University in the centre of Graz (δ2H =7.84*δ18O +7.19, ANIP 

2012) (Fig. 4) and provide the rainfall signature for the Grazer and Leibnitzer Feld. The 

weighted mean (2000 – 2011) winter precipitation (δ18O/δ2H = - 12.0 + 1.7 / - 85.8 + 15.2 ‰) 

is isotopically lighter than the summer (δ18O/ δ2H = - 6.8 + 0.7 / - 47.1 + 5.3 ‰). The majority 

of stable isotope δ18O data in both groundwater bodies range between -9 and -8 ‰. Assuming 

the weighted yearly mean of the meteorological station Graz (δ 18O = - 8.0 ‰) is 

representative of local precipitation to the two groundwater bodies, the contribution of Mur-

water to the groundwater in the Grazer Feld and Leibnitzer Feld would be between 0 – 30 % 

based on a mean δ 18O-value of - 11.2 ‰ for this section of river (Tab. 3, Fig. 4; Papesch and 

Rank, 1995; Harum et al. 2011). A small contribution of preferential winter precipitation in 

some years cannot be excluded, but a larger portion of winter precipitation would be detected 

from lower tritium values in the range of 6-7 TU (see Fig. 7 and section 5.2).  

Four monitoring sites in the Grazer Feld and two monitoring sites in the Leibnitzer Feld show 

a dominant Mur-water contribution. The wells in Lend (No. 104472), Gries (No. KB09/01, 

105462,) and in particular in Andritz (No. 613162) indicate a Mur water contribution in the 

range of 55 – 70% flowing through gravel conduits beneath the city of Graz. In the Leibnitzer 

Feld just the wells in Obergralla (No. 12292) and in Unter Hasendorf (No. 45212), not far 

from the river Mur, seem to have an elevated river water portion (36 – 43%) in the 

groundwater (Fig.2). 

In areas where infiltration from precipitation dominates the summer half-year contributed 65 

– 75 % in 2009. The estimated proportion of recharge from the summer half-year could be 

even higher if depleted river water (δ 18O = -11.2 ‰) or water originating from slightly higher 

altitude outside of the basins is present. Such lower 18O-values are indicated from springs 

north of Graz, (Hammerbach, Ursprung, δ18O = - 9.32 and- 9.11 ‰, Kralik and Schartner, 
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2010) or (KK61033012, δ 18O = - 9.34, West of the Leibnitzer Feld (Fig. 2 - 3) as well as 

from small rivers e.g. Kainach, Laßnitz or Sulm (δ18O = - 9.32 ‰; Tab. 4; Papesch and Rank, 

1995, Kralik et al., 2011, Fig. 4). 

In contrast to the unusual high recharge in the summer half-year 2009 with 50% higher 

precipitation rates (2009: 1204 mm/a) than the long term mean in the year 1990 the amount of 

precipitation was 12% lower than usual (1990: 840 mm/a). The mean summer half-year 

recharge, calculated from the groundwater data (1990) of Papesch and Rank (1995) and from 

the precipitation station at Graz (1987-90), are in the range of 45-50 %. In these humid 

unconfined aquifers precipitation during summer half-years have at least the same importance 

as winter precipitation and snow-melt recharge. Obviously, during summer half year water of 

heavy precipitation events is only partly lost by evapotranspiration and contributes to 

groundwater recharge. 

The well documented evaporation effect of the gravel pit lakes “Schwarzl” (Grazer Feld, 

Yehdegho and Probst, 2000) and “Tillmitsch” (Leibnitzer Feld, Papesch and Rank, 1995; 

Müllegger et al., 2011) is evident in several monitoring wells with an obvious evaporation 

trend (δ2H =4.38xδ18O-22.14). Clear indication of evaporitic δ18O enrichment can be seen 4 - 

5 km downstream of the Schwarzl Lakes in the monitoring site close to Kalsdorf (No. 624372, 

Fig. 2 and 4). An even greater enrichment is observed 2 – 3 km downstream of the Tillmitsch 

gravel pit lakes in the monitoring well Tillmitsch (No. 12022, Fig. 3 and Fig. 4). 

Most groundwater samples in the Grazer Feld are significantly more enriched in magnesium, 

sulphate and chlorine compared to the groundwater samples in the Leibnitzer Feld (Fig. 5). 

The higher magnesium content may be derived from the Palaeozoic (Devonian) dolomites, 

which surround the Northern parts of the Grazer Feld. The sulphate and chlorine may be the 

influence of urban sewer water from the densely populated city of Graz (270,000 inhabitants). 

Groundwater in heavily urbanised areas is not only impacted by leakage of sewer water, but 
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also by leaching construction material above and below ground, which is also documented by 

a general higher conductivity of 723±28 µS/cm compared to 621±90 µS/cm in the Leibnitzer 

Feld. 

Four groundwater samples at the South-Western border of the Grazer Feld Hautzendorf (No. 

652092), Unterpremstätten (No. 652532), Wundschuh (No. 656342) and partly Werndorf (No. 

655192) have a different major ion composition with a depletion in bicarbonate and a relative 

enrichment in sulphate, chlorine, sodium and potassium (Fig. 5).  

The site close to Lang (No. 20152) in the North-West and three close to St. Veit (No. 36322, 

25262 + 36032) in the South-East of the Leibnitzer Feld are of similar composition. For all 

these sites contact with a carbonate poor host rock as in the Upper Terraces (pre-Würm) (pers. 

communication P. Rauch) as well as variable degrees of agricultural inputs may have largely 

influenced the hydrochemistry of these sites. The indication of a different chemistry in the 

NW in the area of an older Riss terrace and in the SE was reported by Zötl (1968) showing 

lower pH (6.0-6.6) and lower water hardness (dH=<6.9°, approx.<100 mg/L HCO3) in these 

areas. A pure contamination effect is very unlikely, because in most cases of contamination 

the general mineralisation is elevated and not lowered in these groundwaters as indicated by 

an EC range of 220-400 µS/cm. 

The diagram of nitrate vs. boron (Fig. 6) shows the impact of sewage and agriculture in the 

two groundwater bodies. This differentiation is based on the assumption that boron is 

predominantly derived from detergents in sewer waters and nitrate from both agricultural 

fertilizers and sewer waters. The frequent monitoring sites with high boron and elevated 

nitrate concentrations in the north of the Grazer Feld indicate a dominant sewer water impact. 

The more frequent medium to high nitrate and low boron concentration in the Leibnitzer Feld 

seem to delineate the dominant agricultural fertilizer input. The only site with high boron 

content (Obergralla, No. 12292) lies in a fairly urbanized area of the Leibnitzer Feld. Samples 
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with high boron and nitrate content could be a mixture of both sources (Fig. 6). The 

monitoring sites with low nitrate and boron composition are either diluted by a high 

proportion of the river Mur-water or are the two sites with low oxygen content in the 

groundwater where nitrate concentrations are lower due to denitrification e.g. Andritz, No. 

613162; Wagna, No. 45242). 

The previously mentioned CFC-11 and CFC-12 contamination is generally higher in the 

groundwater of the Grazer Feld compared to measurements in the Leibnitzer Feld (Fig. 7). 

The enrichment is particular high in CFC-12 (up to 214 pmol/kg). The highest concentrations 

are found in the monitoring wells in Graz itself (Gries, No. 105462; Liebenau, No. 107402 

and Neuseiersberg, No. 116142). An obvious correlation of CFC-12 with the concentrations 

in sulphate, sodium, chlorine and boron (regression analysis; r2 = 0.4 - 0.6) indicate a similar 

source as the sewer water of this area. As shown in Fig. 7 such excess values are found in 

Austria in several basins with a high population rate underlain by groundwater bodies. The 

source of CFC-12 and probably of CFC-11 is leaching from CFC-containing material above 

and below ground as well is mixing with waste water. Just two monitoring sites with nearly 

no dissolved oxygen (Andritz, No. 613162; Wagna, No. 45242) show concentrations much 

lower than equilibration values (Fig. 7), but these cannot be used for dating purposes as CFCs 

are known to degrade biologically under reducing conditions (Horneman et al. 2008). Most 

wells in the Leibnitzer Feld show CFC-11 values lower than expected for recent 

groundwaters. Variable reducing and oxidizing condition in parts of the Leibnitzer Feld could 

be the reason for the low CFC-11 values (Darling et al., 2012). 

Höhener et al. (2002) reported that in 12 of 16 aquifers groundwater was locally contaminated 

with CFCs in concentrations exceeding equilibrium with respect to modern air. Pathways of 

CFC input to groundwater such as local atmospheric pollution (Darling and Gooddy, 2007), 
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landfills (Darling et al. 2010), and industrial solvent spills (Morris et al., 2006) are widely 

reported throughout the literature.  

 

5.2 Estimation of mean residence time 

The majority of the groundwater samples in the Grazer and Leibnitzer Feld have slightly 

lower tritium concentrations than the weighted mean precipitation value in Graz (Fig. 8). This 

is in agreement with the δ18O evidence that the groundwater contains variable amounts of 

Mur-river water and/or of other small rivers which originate from outside of the groundwater 

basins. From 2006 on due to the input of older bomb-tritium from groundwater, the nearly 

complete disappearance of the bomb tritium and the decay of “natural tritium” produced by 

cosmic rays, the tritium concentrations in the river Mur are now lower than the weighted 

mean precipitation values of Graz (Fig. 8). 

The tritium content of the river Mur has been measured on a monthly basis 5 km downstream 

of the investigation area at the Austrian – Slovenian border (Spielfeld) (ANIP 2012) since 

1977 (Fig. 3 and 8). Based on the input data from the University of Graz the several lumped 

parameter models (Maloszewski and Zuber, 1996) yielded MRTs of the Mur-water between 3 

and 4 years. 

However, tritium in the monitoring site close to Wundschuh (10.1 TU; No. 656342) exceeds 

the weighted mean precipitation (9.7 TU; wt. mean 1997-2011) whereas the monitoring wells 

Wildon, St. Georgen a. Stiefing, St. Veit (No. 40102, 31082, 36322, KK61036032) show 

lower tritium concentrations (7.1 -7.8 TU). The higher tritium value at the Wundschuh site 

indicates the influence of the bomb peak resulting in a dispersion model age older than 11 

years (Fig. 9). The derived 3H/3He age is 20.5 yrs. (see below and Tab. 3) and in agreement 

with lumped parameter ages calculated in the range of 19 – 23 years. The CFC-11 value of 1.5 
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pmol/kg of the Wundschuh well is the only site with oxygen content above 1.5 mg/L in the 

Grazer Feld, which do not exceed equilibration values of the present global atmospheric 

concentration (Fig. 7) and therefore may provide a valid age. This value support the older 

MRT, but the calculated age indicate an even older residence time (38 years) which might 

suggest at least partial degradation of the CFC-11.  

The highest measured tritium concentration of 11.7 TU at the St. Veit site (No. 25262) is not 

consistent with a tritiogenic 3He concentration of 0 TU. Potentially this water has been re-

equilibrated with atmospheric air and thereby lost its 3He excess. However, this theory, is not 

supported by the Ne data as this shows an excess of 7%. Alternatively the high tritium 

concentration is a result of pure summer recharge water entering the aquifer, but again this is 

not supported by high summer- δ18O values. Another possibility could be a local 3H high 

caused by contamination due to an unmarked landfill site as these are known to be sources of 

tritium (Robinson and Gronow 1996).  

The monitoring wells sampled by Papesch and Rank (1995) in the years 1989-1990 in the 

Leibnitzer Feld are all from different domestic wells than the ones sampled in this study, but 

still indicate that, with the exception of two sites, they are all just above or close to the 

precipitation curve shown in red in Fig. 8, suggesting low MRT’s of less than 5 years. 

The 3He, 4He and Ne measurements are combined to derive 3He from tritium decay, so called 

tritiogenic 3He (3Hetrit). Most groundwater samples have 3Hetrit below 0.25 TU indicating that 

the time elapsed since the separation of atmospheric exchange in the unsaturated zone or in 

the river water is less than several months. A mean unsaturated zone thickness of 5 – 6 m and 

a mean vertical infiltration rate of 2.2 – 2.8 m/y, measured at the lysimeter station Wagna 

(Stumpp et al., 2009), lead to a transfer time from the surface to the water table of 2-3 years. 

The high precipitation rate in 2009 (1204 mm/a) may have shortened the MRTs to a small 

extent. This may be indicated in the lysimeter station as the measurement in 2009 showed no 
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3Hetrit. (depth to the groundwater 2.95 m) whereas the repetition in the dry year 2011 (depth to 

the groundwater 3.70 m) yielded a 3Hetrit of 0.1 TU. 

The non- detectable or very low concentrations of radiogenic 4He (4Herad) are an additional 

indication for the absence of older water components. Exceptions are the slightly elevated 

4Herad concentrations in Gries (KB 01/09 13 + 27 m) and close to Wildon (40102) which point 

to the influence of fracture zones in the basement of the recharge area. 

The few monitoring sites with somewhat elevated 3Hetrit as the ones close to Wundschuh (No. 

656342), Wildon (No. 40102), St. Georgen (No. 31082) and the spring close to St. Veit (No. 

36032, Kralik et al., 2011) indicate an inflow of water from outside of the basin. Another 

reason for MRTs > 5 years are waters from deeper wells (Gries KB 01/09 27 m) in 

combination with relative thicker unsaturated zones (St. Veit, No. 36322, 13.5 m) (see Tab. 1, 

3 and 4 as well as Fig. 9 and 10). The major ion chemistry of the groundwater at the South-

Western part of the Grazer Feld suggests flow through the carbonate-free Upper Terraces west 

of the Grazer Feld. In a similar way, the hydrochemistry of groundwater in the South-East 

(South of the river Mur) of the Leibnitzer Feld, including the spring No. 36032, is influenced 

by waters derived from the adjacent remnants of the carbonate-free Upper Terraces (Fig. 5, 

Flügel and Neubauer, 1984).  

The calculated 85Kr tracer age of groundwater in the Südbeton well is only slightly different 

from a “zero-age” (Table 4) confirming the findings from 3H/3He data with ages generally 

younger than 5 years (Tab. 4 and 5). 

6. Conclusions 

Measuring monitoring wells for 18O/2H-variation four times a year and 3H/3He isotopes one to 

two times a year provided a parsimonious strategy to investigate young groundwater and to 

significantly improve the hydrogeological conceptual model. 85Kr-analyses were applied in 
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two monitoring sites as robust verification of other tracers and confirm their findings. Mean 

18O/2H data showed that the majority of groundwater recharge is supplied by precipitation 

with a balanced contribution in the summer and winter. Some groundwater wells relatively 

close to rivers contain a high fraction of river water. Long term major ion chemistry, together 

with determinants including boron and nitrate indicate contamination from agricultural and 

urban sources. Concentrations of CFC-11 and CFC-12 considerably exceed the atmospheric 

equilibrium value in some monitoring wells and CFC-12 correlates to other sewage indicators 

such as SO4, Na, Cl and B. 

The majority of wells yielded MRTs of less than 5 years. Just a few wells showed longer 

MRTs either due to contributions from subsurface recharge from more distant areas or deeper 

(>20m) wells with thicker unsaturated zones. 

Overall the study confirms that nitrate contamination occurs by diffuse or point sources from 

agricultural and/or urban activities mainly during the last five years. MRTs help to improve 

water management decisions and to set measures that all monitoring wells will reach a good 

status. From this work it is clear that measures need to be implemented quickly to mitigate 

against further deterioration of these waters and to achieve the goals within timescales defined 

by the EU Water Framework Directive. 
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Table 1 

Well construction details Grazer and Leibnitzer Feld: No. Austrian Quality Monitoring 
System 
__________________________________________________________________________________ 
Well 
number 

Well site Elevation 
of land 
surface (m) 

Diameter of 
well (cm) 

Mean depth 
to water 
(m) 

Total depth 
of well (m) 
below 
ground 

Open 
interval 
(m) 

 Grazer Feld      
104472 Lend Graz 360   12.3 18.64 44.0 8.6-44.0 
105462 Gries Graz 340   14.8   7.33 23.9 7.3-23.9 
105482 Gries Graz 350   12.0 15.92 36.0  
107252 Liebenau Graz 320    8.25 19.7  
107402 Liebenau Graz 325    8.95 11.8  
112392 Andritz Graz 315   12.0   8.29   8.9  
116142 Neuseiersbg. Graz 325 100 11.24 12.4  
117282 Puntigam Graz 335 100   6.65   8.9  
608492 Wagnitz 357    2.34 16.2  
611522 Gössendorf 330   20.0   2.32 11.7  
613162 Andritz 360 100   3.34   6.4  
624372 Kalsdorf 345   20   3.88 14.5  
652092 Unterpremstätten 315 100   6.89 10.3  
652532 Oberpremstätten 330   14.4   4.33   8.7  
655192 Werndorf 313 150   4.79   6.5  
655512 Werndorf 295   15   2.94   9.5  
656302 Gradenfeld 305 100   2.64   6.1  
656342 Wundschuh 310 100 14.0 16.1  
KB01/0
9 13m 

Gries Graz 346.51   12.5   8.38 13.0  

KB01/0
9 27m 

Gries Graz 346.51   12.5   8.38 29.0  

Spring Kalsdorf  320.0 spring   0   0  
Mur Grieskai Graz  river   0   0  
       
 Leibnitzer Feld      
12022 Tillmitsch 273 160   1.88   4.0  
12292 Gralla 282 100   4.91   7.5  
20152 Lang 265 100 10.80 12.3  
25262 St. Veit 245 100   5.12   5.6  
27282 Ragnitz 270 100   4.87   7.0  
31082 St. Georgen 296 100   7.13 10.0  
31142 St. Georgen 275 100   5.22   8.0  
36322 St. Veit 260   12 13.29 18.9  
40102 Wildon 295 100   7.98   9.6  
45212 Wagna 245 100   3.31   4.2  
45242 Wagna 250 100   2.71   3.8  
36032 St. Veit 259 spring   0   0  
Sd. II Lysimeter Wagna 266.8   12.6   4.02 11.0  
S-beton St. Veit 260 150   4.77   7.3  
Laßnitz Stangersdorf 284 river   0   0  
Sulm Leibnitz 264 river   0   0  
Gravel 
pit lake 

Tillmitsch 283 lake   0   0  
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Gravel 
pit lake 

Gnaser 257 lake   0   0  
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Table 2 

Physical properties and concentrations of major ions of sampling sites not belonging to the Austrian Water Quality Monitoring System 

Site No. Sampling 
date 

Water 
temp. 
(° C) 

Electric 
conduct. 
(µS/cm) 

pH Dissolv. 
Oxygen 
(mg/L) 

Ca 
 
(mg/L) 

Mg 
 
(mg/L) 

Na 
 
(mg/L) 

K 
 
(mg/L) 

HCO3 

 

(mg/L) 

SO4 

 

(mg/L) 

Cl 
 
(mg/L) 

NO3 

 

(mg/L) 

KB01/09 13m 22/04/2010 14.1 718 7.35 7.5 91.6 17.3 25.4 5.1  279 54.7 46.4 33.0 

KB01/09 27m 22/04/2010  669 7.47 6.9 88.4 17.1 21.2 4.8  283 50.9 38.2 25.2 

Kalsdorf 
Spring 

  
22/04/2010 

10.1 879 7.22 
8.4 120.1 26.0 16.9 2.5 385 58.1 39.5 53.8 

Wagna  Sd. II 
Lysimeterst. 

  
26/08/2009 14.7 681 6.96 7.3 120.7 11.9 15.0 2.2 343 36.5 19.3 37.8 

Wagna  Sd. II 
Lysimeterst. 

  
28/04/2011 10.3 726 7.15 

         

Südbeton well 28/04/2011 
10.8 888 7.16 4.7 

        

Gnaser gravel 
pit lake 28/04/2011 17.4 581 8.15   16.6 
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Table 3 

Isotope data and concentration of dissolved gases in water as well as Mean Residence Times (MRTs) from the Grazer Feld 
Sample 
No. 

Sampling 
period 

δ 18O  
(‰)* 

Std. 
Dev.* 

δ 2H 
(‰)** 

3H 

(TU) 

3H 1σ 
uncer-
tainty 

CFC11 

(pmol/ 
kg) 

CFC12 

(pmol/kg)

3He 

(10-11cc/ 
kg) 

4He 

(10-5cc/ 
kg) 

Ne 

(10-4cc/ 
kg) 

4Heradio 

(10-6 cc/ 
kg) 

Tritiogenic 
3He 

(TU) 

MRT 
(yr) 

104472 25/8/09 -9.80 0.27 -70.6 7.4 0.3 6.3 64.0 6.79 5.01 2.15 0.0 0.0 < 5 

105462 25/8/09 -10.09 0.36 -72.1 9.1 0.4 23.0 214 6.76 5.00 2.16 0.0 0.0 < 5 

105482 25/8/09 -8.64 0.14 -61.4 8.0 0.4 12.4 53.2 7.20 5.25 2.21 0.0 0.0 < 5 

107252 26/8/09 -8.35 0.23 -59.9 7.5 0.3 6.9 37.1 7.30 5.32 2.25 0.0 0.1 < 5 

107402 26/8/09 -8.34 0.19 -60.5 8.5 0.4 26.6 170 8.01 5.81 2.46 0.0 0.2 < 5 

112392 25/8/09 -8.57 0.19 -60.9 8.4 0.4 9.7 42.1 7.34 5.35 2.26 0.0 0.1 < 5 

116142 26/8/09 -8.53 0.10 -60.5 7.9 0.4 131 120 8.08 5.77 2.44 0.0 0.6 < 5 

117282 25/8/09 -8.59 0.21 -61.5 8.0 0.4 17.7 78.2 7.33 5.31 2.26 0.0 0.3 < 5 

608492 1/9/09 -9.01 0.08 -64.7 8.1 0.4 15.6 66.8 7.28 5.30 2.24 0.0 0.1 <5 

611522 1/9/09 -8.30 0.13 -58.9 7.8 0.3 45.7 83.2 6.82 4.98 2.13 0.0 0.0 < 5 

613162 25/8/09 -10.72 0.21 -72.4 8.4 0.4 0.9 1.3 7.06 5.20 2.24 0.0 0.0 < 5 

624372 1/9/09 -7.03 0.19 -56.1 8.2 0.4 4.6 73.6 7.65 5.57 2.40 0.0 0.0 < 5 

652092 26/8/09 -8.38 0.23 -60.1 7.8 0.3 7.1 23.5 8.24 5.92 2.56 0.0 0.5 < 5 

652532 25/8/09 -8.20 0.34 -58.8 8.7 0.4 23.2 36.2 7.88 5.69 2.40 0.0 0.3 < 5 
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655192 1/9/09 -8.16 0.17 -58.0 7.7 0.3 3.7 27.4 8.30 6.05 2.50 0.0 0.0 < 5 

655512 26/8/09 -8.27 0.06 -60.1 7.6 0.3 11.9 72.5 6.75 5.07 2.10 1.3 0.0 < 5 

656302 26/8/09 -8.24 0.21 -58.9 7.6 0.4 5.3 12.2 6.25 4.57 1.97 0.0 0.1 < 5 

656342 26/8/09 -8.61 0.10 -59.8 10.1 0.5 1.5 5.8 1.24 5.11 2.24 0.0 21.9 11–25 

KB01/09 
13m 

22/4/10 -9.90  -69.9 7.8 0.6 118.7 70.3 7.05 5.99 2.11 10.2 0.6 < 5 

KB01/09 
27m 

22/4/10 -10.0  -69.6 6.0 0.5 89.5 78.6 7.52 6.05 2.17 8.9 1.4 6 - 10 

Kalser 
Spring 

22/4/10 -8.72  -61.9 7.8 0.6 93.0 14.6 6.58 4.77 2.08 0.0 0.0 < 5 

Mur 22/4/10 -11.10  -77.7           

* VSMOW = Vienna Standard Mean Ocean Water; mean and standard deviation of four measurements between 2009/2-2009/12, ** mean of three measurements 
between 2009/2-2009/12; TU =Tritium Unit ([3H/1H] = ~10-18 = 0,119 Bq/kg); STP = Standard condition for Temperature and Pressure (273,15° Kelvin and 
101,325 kPa) 
 

 

 
 
 
 
 
 

 

 

 



32 

 

Table 4 

Isotope data and concentration of dissolved gases in water as well as Mean Residence Times (MRTs) from the Leibnitzer Feld 
Sample 
No. 

Sampling 
period 

δ 18O  
(‰)   * 

Std. 
Dev. 

δ 2H 
(‰)   
** 

3H 

(TU) 

3H 1σ 
uncert
ainty 

CFC11 

(pmol/ 
kg) 

CFC12 

(pmol/kg)

3He 

(10-11cc/ 
kg) 

4He 

(10-5cc/ 
kg) 

Ne 

(10-4cc/ 
kg) 

4Heradio 

(10-6 cc/ 
kg) 

Tritiogenic 
3He 

(TU) 

MRT 
(yr) 

12022 27/08/09 -5.43 0.23 -47.3 7.2 0.5 68.1 36.1 7.33 5.43 2.26 0.0 0.0 < 5 

12292 27/08/09 -9.36 0.16 -66.4 9.0 0.4 2.4 5.8 6.20 4.55 1.98 0.0 0.0 < 5 

20152 27/08/09 -8.73 0.11 -62.3 7.5 0.3 2.6 23.1 6.58 4.92 2.08 0.0 0.0 < 5 

25262 27/08/09 -8.35 0.23 -59.9 11.7 0.5 1.4 7.5 6.55 4.87 2.08 0.0 0.0 < 5 

27282 26/08/09 -8.71 0.08 -61.9 7.5 0.4 2.3 7.9 7.92 6.06 2.45 1.1 0.0 < 5 

31082 26/08/09 -8.57 0.19 -60.9 7.1 0.3 2.4 6.4 8.75 6.96 2.76 1.3 0.0 6 – 10 

31142 26/08/09 -8.33 0.56 -59.4 8.4 0.4 3.3 10.5 7.92 6.05 2.44 1.2 0.0 < 5 

36322 27/08/09 -8.79 0.08 -61.1 7.5 0.4 2.4 8.8 11.9 8.71 3.47 0.0 0.0 6 – 10 

40102 27/08/09 -8.77 0.19 -62.6 7.8 0.4 3.1 9.5 9.04 11.5 2.36 58.0 4.6 6 – 10 

45212 27/08/09 -9.17 0.30 -65.2 8.1 0.4 7.2 32.4 7.17 5.45 2.16 3.3 0.7 < 5 

45242 27/08/09 -8.94 0.19 -63.3 9.1 0.4 2.2 0.1 7.88 5.72 2.43 0.0 0.2 < 5 

36032 1/9/09 -7.03 0.19 -56.1 8.2 0.4 4.6 73.6      6 – 10 

Sd. II 
Lysim. 

26/08/09 -8,99 0.18 -64,5   12.3 30.3 7.18 5.39 2.20 1.1 0.0 < 5 

Sd. II 
Lysim. 

28/04/11 -8.81  -62.0 8.8 0.4   7.06 5.35 2.18 1.9 0.1 < 5 
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S-beton 28/04/11 -8.44  -58.6 9.8 0.4   6.47 6.17 2.20 9.7 0.0 < 5 

Laßnitz 17/06/09 -8.18             

Sulm 17/06/09 -8.76             

Tillmits
ch lake 

17/06/09 -4.24             

Gnaser 
lake 

28/04/11 -7.79  -55.9 8.5 0.4   6.99 4.52 1.88 2.2 0.0 < 5 

See abbreviations and comments Table 3  
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Table 5 

Krypton-85 activities and related water residence times for a piston flow (PF) and exponential model (EM) scenario.  
Site 85Kr PF age (years) EM age (years) 
 (dpm/cc Kr) mean min max mean min max 

Wagna lys. Sd. II 71.7±2.7 0.8 0.2 1.9 0.9 0.2 1.7 
Südbeton well 67.7±2.6 2.1 1.6 2.5 2.0 1.3 2.8 
Gnaser gravel l. 75.5±3.6 0.4 0.0 0.8 0.4 0.0 0.9 
Atmosphere 72.6±2.8 0.6 0.0 1.8 0.7 0.0 1.4 
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Figures: 1 
Fig. 1. Position of the Grazer Feld and Leibnitzer Feld groundwater bodies in the South-East 2 

(Province Styria) of Austria. 3 

Fig. 2. Mean 18O values of selected quality monitoring wells and springs (large symbols), 4 

other monitoring wells (Harum et al. 2011; small symbols), estimated groundwater flow and 5 

surface water discharge and infiltration to the Grazer Feld. 6 

Fig. 3. Mean 18O values of selected quality monitoring wells (large symbols), domestic wells 7 

(Papesch and Rank 1995; small symbols), estimated groundwater flow and surface water 8 

discharge and infiltration to the Leibnitzer Feld.  9 

Fig. 4. Delta 18O vs. 2H values of selected quality monitoring wells, springs, rivers and gravel 10 

pit lakes in the Grazer Feld and Leibnitzer Feld.  11 

Fig. 5. Major Ion chemistry of the groundwater samples in the Grazer Feld and Leibnitzer 12 

Feld (H2O Fachdatenbank 2009) and the mean river Mur-water at Kalsdorf (Grazer Feld). 13 

Fig. 6. Mean nitrate vs. boron content of groundwater samples in the Grazer and Leibnitzer 14 

Feld (H2O Fachdatenbank 2009) and their indicated likely origin. 15 

Fig. 7. CFC-11 vs. CFC-12 concentrations in groundwater of the Grazer Feld and Leibnitzer 16 

Feld with oxygen contents above and below 1 mg/L. The concentrations of other groundwater 17 

bodies in Austria are shown for comparison. The development of equilibrium concentration in 18 

water (10°C) over time is shown as black diamonds. Values above and in the centre of Graz 19 

are indicated with numbers of the monitoring wells. 20 

Fig. 8. Tritium content of precipitation (Univ.Graz; ANIP 2012), groundwater (Grazer + 21 

Leibnitzer Feld) and the river Mur vs. time. 22 

Fig. 9. Mean Residence Times (MRTs) of selected quality monitoring wells, estimated 23 

groundwater flow and surface water discharge and infiltration in the Grazer Feld. 24 

Fig. 10. Mean Residence Times (MRTs) of selected quality monitoring wells (large symbols), 25 

domestic wells (Papesch and Rank 1995; small symbols), estimated groundwater flow and 26 

surface water discharge and infiltration in the Leibnitzer Feld. 27 
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1 
Fig. 1. Position of the groundwater bodies Grazer Feld and Leibnitzer Feld in the South-East 2 

(Province Styria) of Austria. 3 

 4 

 5 
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 1 

Fig. 2. Mean 18O values of selected quality monitoring wells and springs (large symbols), 2 

other monitoring wells (Harum et al. 2011; small symbols), estimated groundwater flow and 3 

surface water discharge and infiltration to the Grazer Feld. 4 

 5 
 6 
 7 
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 1 

2 
 Fig. 3. Mean 18O values of selected quality monitoring wells (large symbols), domestic wells 3 

(Papesch and Rank 1995; small symbols), estimated groundwater flow and surface water 4 

discharge and infiltration to the Leibnitzer Feld.  5 
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 1 
Fig. 4. Delta oxygen-18 vs. Hydrogen-2 values of selected quality monitoring wells, springs, 2 

rivers and gravel pit lakes in the groundwater bodies Grazer Feld and Leibnitzer Feld.  3 
 4 

 5 

 6 

Fig. 5. Major Ion chemistry of the groundwater samples in the Grazer Feld and Leibnitzer 7 

Feld (H2O Fachdatenbank 2009) and the mean river Mur-water at Kalsdorf (Grazer Feld). 8 
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1 
 Fig. 6. Mean nitrate vs. boron content of groundwater samples in the Grazer and Leibnitzer 2 

Feld (H2O Fachdatenbank 2010) and their indicated likely origin. 3 

 4 

 5 

Fig. 7. CFC-11 vs. CFC-12 concentrations in groundwater of the Grazer Feld and Leibnitzer 6 

Feld with oxygen contents above and below 1 mg/L. The concentrations of other groundwater 7 

bodies in Austria are shown for comparison. The development of equilibrium concentration in 8 

water (10°C) over time is shown as black diamonds. Values above and in the centre of Graz 9 

are indicated with numbers of the monitoring wells.  10 
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 1 

 2 

 3 

4 
Fig. 8. Tritium content of precipitation (Univ.Graz; ANIP 2012), groundwater (Grazer + 5 

Leibnitzer Feld) and the river Mur vs. time.  6 
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 1 

 2 
Fig. 9. Mean Residence Times (MRTs) of selected quality monitoring wells, estimated 3 

groundwater flow and surface water discharge and infiltration in the Grazer Feld. 4 

 5 
 6 
 7 
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1 
 Fig. 10. Mean Residence Times (MRTs) of selected quality monitoring wells (large 2 

symbols), domestic wells (Papesch and Rank 1995; small symbols), estimated groundwater 3 

flow and surface water discharge and infiltration in the Leibnitzer Feld. 4 


