354 research outputs found
Predicting low-frequency radio fluxes of known extrasolar planets
Context. Close-in giant extrasolar planets (''Hot Jupiters'') are believed to
be strong emitters in the decametric radio range.
Aims. We present the expected characteristics of the low-frequency
magnetospheric radio emission of all currently known extrasolar planets,
including the maximum emission frequency and the expected radio flux. We also
discuss the escape of exoplanetary radio emission from the vicinity of its
source, which imposes additional constraints on detectability.
Methods. We compare the different predictions obtained with all four existing
analytical models for all currently known exoplanets. We also take care to use
realistic values for all input parameters.
Results. The four different models for planetary radio emission lead to very
different results. The largest fluxes are found for the magnetic energy model,
followed by the CME model and the kinetic energy model (for which our results
are found to be much less optimistic than those of previous studies). The
unipolar interaction model does not predict any observable emission for the
present exoplanet census. We also give estimates for the planetary magnetic
dipole moment of all currently known extrasolar planets, which will be useful
for other studies.
Conclusions. Our results show that observations of exoplanetary radio
emission are feasible, but that the number of promising targets is not very
high. The catalog of targets will be particularly useful for current and future
radio observation campaigns (e.g. with the VLA, GMRT, UTR-2 and with LOFAR).Comment: 4 figures; Table 1 is available in electronic form at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/475/35
Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs
M-dwarf stars are generally considered favourable for rocky planet detection.
However, such planets may be subject to extreme conditions due to possible high
stellar activity. The goal of this work is to determine the potential effect of
stellar cosmic rays on key atmospheric species of Earth-like planets orbiting
in the habitable zone of M-dwarf stars and show corresponding changes in the
planetary spectra. We build upon the cosmic rays model scheme of Grenfell et
al. (2012), who considered cosmic ray induced NOx production, by adding further
cosmic ray induced production mechanisms (e.g. for HOx) and introducing primary
protons of a wider energy range (16 MeV - 0.5 TeV). Previous studies suggested
that planets in the habitable zone that are subject to strong flaring
conditions have high atmospheric methane concentrations, while their ozone
biosignature is completely destroyed. Our current study shows, however, that
adding cosmic ray induced HOx production can cause a decrease in atmospheric
methane abundance of up to 80\%. Furthermore, the cosmic ray induced HOx
molecules react with NOx to produce HNO, which produces strong HNO
signals in the theoretical spectra and reduces NOx-induced catalytic
destruction of ozone so that more than 25\% of the ozone column remains. Hence,
an ozone signal remains visible in the theoretical spectrum (albeit with a
weaker intensity) when incorporating the new cosmic ray induced NOx and HOx
schemes, even for a constantly flaring M-star case. We also find that HNO
levels may be high enough to be potentially detectable. Since ozone
concentrations, which act as the key shield against harmful UV radiation, are
affected by cosmic rays via NOx-induced catalytic destruction of ozone, the
impact of stellar cosmic rays on surface UV fluxes is also studied.Comment: 14 pages, 12 figure
Galactic cosmic rays on extrasolar Earth-like planets I. Cosmic ray flux
(abridged abstract) Theoretical arguments indicate that close-in terrestial
exoplanets may have weak magnetic fields, especially in the case of planets
more massive than Earth (super-Earths). Planetary magnetic fields, however,
constitute one of the shielding layers that protect the planet against
cosmic-ray particles. In particular, a weak magnetic field results in a high
flux of Galactic cosmic rays that extends to the top of the planetary
atmosphere. We wish to quantify the flux of Galactic cosmic rays to an
exoplanetary atmosphere as a function of the particle energy and of the
planetary magnetic moment. We numerically analyzed the propagation of Galactic
cosmic-ray particles through planetary magnetospheres. We evaluated the
efficiency of magnetospheric shielding as a function of the particle energy (in
the range 16 MeV E 524 GeV) and as a function of the planetary
magnetic field strength (in the range 0 {M} 10
). Combined with the flux outside the planetary magnetosphere, this
gives the cosmic-ray energy spectrum at the top of the planetary atmosphere as
a function of the planetary magnetic moment. We find that the particle flux to
the planetary atmosphere can be increased by more than three orders of
magnitude in the absence of a protecting magnetic field. For a weakly
magnetized planet (), only particles with energies
below 512 MeV are at least partially shielded. For a planet with a magnetic
moment similar to Earth, this limit increases to 32 GeV, whereas for a strongly
magnetized planet (), partial shielding extends up to 200
GeV. We find that magnetic shielding strongly controls the number of cosmic-ray
particles reaching the planetary atmosphere. The implications of this increased
particle flux are discussed in a companion article.Comment: 10 pages, 9 figures; accepted in A&
Galactic cosmic rays on extrasolar Earth-like planets: II. Atmospheric implications
(abridged abstract) Theoretical arguments indicate that close-in terrestial
exoplanets may have weak magnetic fields. As described in the companion article
(Paper I), a weak magnetic field results in a high flux of galactic cosmic rays
to the top of the planetary atmosphere. We investigate effects that may result
from a high flux of galactic cosmic rays both throughout the atmosphere and at
the planetary surface. Using an air shower approach, we calculate how the
atmospheric chemistry and temperature change under the influence of galactic
cosmic rays for Earth-like (N_2-O_2 dominated) atmospheres. We evaluate the
production and destruction rate of atmospheric biosignature molecules. We
derive planetary emission and transmission spectra to study the influence of
galactic cosmic rays on biosignature detectability. We then calculate the
resulting surface UV flux, the surface particle flux, and the associated
equivalent biological dose rates. We find that up to 20% of stratospheric ozone
is destroyed by cosmic-ray protons. The reduction of the planetary ozone layer
leads to an increase in the weighted surface UV flux by two orders of magnitude
under stellar UV flare conditions. The resulting biological effective dose rate
is, however, too low to strongly affect surface life. We also examine the
surface particle flux: For a planet with a terrestrial atmosphere, a reduction
of the magnetic shielding efficiency can increase the biological radiation dose
rate by a factor of two. For a planet with a weaker atmosphere (with a surface
pressure of 97.8 hPa), the planetary magnetic field has a much stronger
influence on the biological radiation dose, changing it by up to two orders of
magnitude.Comment: 14 pages, 9 figures, published in A&
Candidates for detecting exoplanetary radio emissions generated by magnetosphere-ionosphere coupling
In this paper we consider the magnetosphere-ionosphere (M-I) coupling at
Jupiter-like exoplanets with internal plasma sources such as volcanic moons,
and we have determined the best candidates for detection of these radio
emissions by estimating the maximum spectral flux density expected from planets
orbiting stars within 25 pc using data listed in the NASA/IPAC/NExScI Star and
Exoplanet Database (NStED). In total we identify 91 potential targets, of which
40 already host planets and 51 have stellar X-ray luminosity 100 times the
solar value. In general, we find that stronger planetary field strength,
combined with faster rotation rate, higher stellar XUV luminosity, and lower
stellar wind dynamic pressure results in higher radio power. The top two
targets for each category are Eri and HIP 85523, and CPD-28 332 and
FF And.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society Letter
On the protection of extrasolar Earth-like planets around K/M stars against galactic cosmic rays
Previous studies have shown that extrasolar Earth-like planets in close-in
habitable zones around M-stars are weakly protected against galactic cosmic
rays (GCRs), leading to a strongly increased particle flux to the top of the
planetary atmosphere. Two main effects were held responsible for the weak
shielding of such an exoplanet: (a) For a close-in planet, the planetary
magnetic moment is strongly reduced by tidal locking. Therefore, such a
close-in extrasolar planet is not protected by an extended magnetosphere. (b)
The small orbital distance of the planet exposes it to a much denser stellar
wind than that prevailing at larger orbital distances. This dense stellar wind
leads to additional compression of the magnetosphere, which can further reduce
the shielding efficiency against GCRs. In this work, we analyse and compare the
effect of (a) and (b), showing that the stellar wind variation with orbital
distance has little influence on the cosmic ray shielding. Instead, the weak
shielding of M star planets can be attributed to their small magnetic moment.
We further analyse how the planetary mass and composition influence the
planetary magnetic moment, and thus modify the cosmic ray shielding efficiency.
We show that more massive planets are not necessarily better protected against
galactic cosmic rays, but that the planetary bulk composition can play an
important role.Comment: 7 figure
Searching for Star-Planet interactions within the magnetosphere of HD 189733
HD 189733 is a K2 dwarf, orbited by a giant planet at 8.8 stellar radii. In
order to study magnetospheric interactions between the star and the planet, we
explore the large-scale magnetic field and activity of the host star.
We collected spectra using the ESPaDOnS and the NARVAL spectropolarimeters,
installed at the 3.6-m Canada-France-Hawaii telescope and the 2-m Telescope
Bernard Lyot at Pic du Midi, during two monitoring campaigns (June 2007 and
July 2008).
HD 189733 has a mainly toroidal surface magnetic field, having a strength
that reaches up to 40 G. The star is differentially rotating, with latitudinal
angular velocity shear of domega = 0.146 +- 0.049 rad/d, corresponding to
equatorial and polar periods of 11.94 +- 0.16 d and 16.53 +- 2.43 d
respectively. The study of the stellar activity shows that it is modulated
mainly by the stellar rotation (rather than by the orbital period or the beat
period between the stellar rotation and the orbital periods). We report no
clear evidence of magnetospheric interactions between the star and the planet.
We also extrapolated the field in the stellar corona and calculated the
planetary radio emission expected for HD 189733b given the reconstructed field
topology. The radio flux we predict in the framework of this model is time
variable and potentially detectable with LOFAR
Coronal properties of planet-bearing stars
Do extrasolar planets affect the activity of their host stars? Indications
for chromospheric activity enhancement have been found for a handful of
targets, but in the X-ray regime, conclusive observational evidence is still
missing. We want to establish a sound observational basis to confirm or reject
major effects of Star-Planet Interactions (SPI) in stellar X-ray emissions. We
therefore conduct a statistical analysis of stellar X-ray activity of all known
planet-bearing stars within 30pc distance for dependencies on planetary
parameters such as mass and semimajor axis. We find that in our sample, there
are no significant correlations of X-ray luminosity or the activity indicator
L_X/L_bol with planetary parameters which cannot be explained by selection
effects. Coronal SPI seems to be a phenomenon which might only manifest itself
as a strong effect for a few individual targets, but not to have a major effect
on planet-bearing stars in general.Comment: accepted by A&
First Observation of Planet-Induced X-ray Emission: The System HD 179949
We present the first observation of planet-induced stellar X-ray activity,
identified for the HD 179949 system, using Chandra / ACIS-S. The HD 179949
system consists of a close-in giant planet orbiting an F9V star. Previous
ground-based observations already showed enhancements in Ca II K in phase with
the planetary orbit. We find an ~30% increase in the X-ray flux over quiescent
levels coincident with the phase of the Ca II enhancements. There is also a
trend for the emission to be hotter at increased fluxes, confirmed by modeling,
showing the enhancement at ~1 keV compared to ~0.4 keV for the background star.Comment: 3 pages, 1 figure; Exoplanets: Detection, Formation and Dynamics, IAU
Symposium 249, eds. Y.-S. Sun, S. Ferraz-Mello, and J.-L. Zhou (Cambridge:
Cambridge University Press
- …