147 research outputs found

    Simbiotics: a multi-scale integrative platform for 3D modeling of bacterial populations

    Get PDF
    Simbiotics is a spatially explicit multiscale modeling platform for the design, simulation and analysis of bacterial populations. Systems ranging from planktonic cells and colonies, to biofilm formation and development may be modeled. Representation of biological systems in Simbiotics is flexible, and user-defined processes may be in a variety of forms depending on desired model abstraction. Simbiotics provides a library of modules such as cell geometries, physical force dynamics, genetic circuits, metabolic pathways, chemical diffusion and cell interactions. Model defined processes are integrated and scheduled for parallel multithread and multi-CPU execution. A virtual lab provides the modeler with analysis modules and some simulated lab equipment, enabling automation of sample interaction and data collection. An extendable and modular framework allows for the platform to be updated as novel models of bacteria are developed, coupled with an intuitive user interface to allow for model definitions with minimal programming experience. Simbiotics can integrate existing standards such as SBML, and process microscopy images to initialize the 3D spatial configuration of bacteria consortia. Two case studies, used to illustrate the platform flexibility, focus on the physical properties of the biosystems modeled. These pilot case studies demonstrate Simbiotics versatility in modeling and analysis of natural systems and as a CAD tool for synthetic biology

    Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes

    Get PDF
    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs ofAMY2A/AMY2B. Read-depth and experimental data showthat different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number.We showthat the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations

    Toward Engineering Biosystems With Emergent Collective Functions

    Get PDF
    Many complex behaviors in biological systems emerge from large populations of interacting molecules or cells, generating functions that go beyond the capabilities of the individual parts. Such collective phenomena are of great interest to bioengineers due to their robustness and scalability. However, engineering emergent collective functions is difficult because they arise as a consequence of complex multi-level feedback, which often spans many length-scales. Here, we present a perspective on how some of these challenges could be overcome by using multi-agent modeling as a design framework within synthetic biology. Using case studies covering the construction of synthetic ecologies to biological computation and synthetic cellularity, we show how multi-agent modeling can capture the core features of complex multi-scale systems and provide novel insights into the underlying mechanisms which guide emergent functionalities across scales. The ability to unravel design rules underpinning these behaviors offers a means to take synthetic biology beyond single molecules or cells and toward the creation of systems with functions that can only emerge from collectives at multiple scales

    Toward engineering biosystems with emergent collective functions

    Get PDF
    Many complex behaviors in biological systems emerge from large populations of interacting molecules or cells, generating functions that go beyond the capabilities of the individual parts. Such collective phenomena are of great interest to bioengineers due to their robustness and scalability. However, engineering emergent collective functions is difficult because they arise as a consequence of complex multi-level feedback, which often spans many length-scales. Here, we present a perspective on how some of these challenges could be overcome by using multi-agent modeling as a design framework within synthetic biology. Using case studies covering the construction of synthetic ecologies to biological computation and synthetic cellularity, we show how multi-agent modeling can capture the core features of complex multi-scale systems and provide novel insights into the underlying mechanisms which guide emergent functionalities across scales. The ability to unravel design rules underpinning these behaviors offers a means to take synthetic biology beyond single molecules or cells and toward the creation of systems with functions that can only emerge from collectives at multiple scales

    Genetic Variants of Wnt Transcription Factor TCF-4 (TCF7L2) Putative Promoter Region Are Associated with Small Intestinal Crohn's Disease

    Get PDF
    Reduced expression of Paneth cell antimicrobial α-defensins, human defensin (HD)-5 and -6, characterizes Crohn's disease (CD) of the ileum. TCF-4 (also named TCF7L2), a Wnt signalling pathway transcription factor, orchestrates Paneth cell differentiation, directly regulates the expression of HD-5 and -6, and was previously associated with the decrease of these antimicrobial peptides in a subset of ileal CD. To investigate a potential genetic association of TCF-4 with ileal CD, we sequenced 2.1 kb of the 5′ flanking region of TCF-4 in a small group of ileal CD patients and controls (n = 10 each). We identified eight single nucleotide polymorphisms (SNPs), of which three (rs3814570, rs10885394, rs10885395) were in linkage disequilibrium and found more frequently in patients; one (rs3814570) was thereby located in a predicted regulatory region. We carried out high-throughput analysis of this SNP in three cohorts of inflammatory bowel disease (IBD) patients and controls. Overall 1399 healthy individuals, 785 ulcerative colitis (UC) patients, 225 CD patients with colonic disease only and 784 CD patients with ileal involvement were used to determine frequency distributions. We found an association of rs3814570 with ileal CD but neither with colonic CD or UC, in a combined analysis (allele positivity: OR 1.27, 95% CI 1.07 to 1.52, p = 0.00737), which was the strongest in ileal CD patients with stricturing behaviour (allele frequency: OR 1.32, 95% CI 1.08 to1.62, p = 0.00686) or an additional involvement of the upper GIT (allele frequency: OR 1.38, 95% CI 1.03 to1.84, p = 0.02882). The newly identified genetic association of TCF-4 with ileal CD provides evidence that the decrease in Paneth cell α-defensins is a primary factor in disease pathogenesis

    Effect of liver transplantation on inflammatory bowel disease in patients with primary sclerosing cholangitis

    Get PDF
    This report investigates the influence of liver transplantation and concomitant immunosuppression on the course of progression of inflammatory bowel disease (IBD) and discusses statistical methodology appropriate for such settings. The data on 303 patients who underwent liver transplantation for primary sclerosing cholangitis (PSC) were analyzed using person-time analysis and Cox regression, with the duration of IBD as the time variable and transplantation as a segmented time-dependent covariate, to take into account both posttransplant and pretransplant history of IBD. The need for colectomy and appearance of colorectal cancer were taken as outcome measures. The only significant risk factor in the multivariate model for colectomy was transplantation itself, which increased the risk of colectomy due to intractable disease (Wald statistic; P =. 001). None of the variables available for analysis were found to influence the risk of colon cancer significantly. Graphs showing the dependence of the instantaneous risk of cancer on the time from onset of IBD and its independence from the latter in the case of colectomy are presented. The use of a unique statistical methodology described for the first time in this setting led us to the somewhat surprising conclusion that transplantation and concomitant use of immunosuppression accelerate the progression of IBD. At the same time, transplantation does not affect the incidence of colorectal cancer. These results confirm the findings of some recent studies and can potentially shed new light on the disease pathogenesis

    Expression of Human Beta-Defensins in Children with Chronic Inflammatory Bowel Disease

    Get PDF
    Background: Human beta-defensins (hBDs) are antimicrobial peptides known to play a major role in intestinal innate host defence. Altered mucosal expression of hBDs has been suggested to be implicated in chronic inflammatory bowel disease pathogenesis. However, little is known about expression of these peptides in children. Methods: Intestinal biopsies were obtained from the duodenum (n = 88), terminal ileum (n = 90) and ascending colon (n = 105) of children with Crohn’s disease (n = 26), ulcerative colitis (n = 11) and healthy controls (n = 16). Quantitative realtime (RT) PCR was performed and absolute mRNA copy numbers analyzed for hBD1-3 as well as inflammatory cytokines IL-8 and TNF-alpha. Results: Significant induction of hBD2 and hBD3 was observed in the inflamed terminal ileum and ascending colon of IBD children. In the ascending colon induction of hBD2 was found to be significantly lower in children with Crohn’s disease compared to ulcerative colitis. A strong correlation was found between inducible defensins hBD2 and 3 and the inflammatory cytokines IL-8 and TNF-alpha, both in the terminal ileum and ascending colon. Conclusion: Our study demonstrates distinct changes in hBD expression throughout the intestinal tract of children with IBD

    Autoimmune hemolytic anemia occurred prior to evident nephropathy in a patient with chronic hepatitis C virus infection: case report

    Get PDF
    BACKGROUND: Renal involvement in patients with chronic hepatitis C virus infection has been suggested to be due to a variety of immunological processes. However, the precise mechanism by which the kidneys are damaged in these patients is still unclear. CASE PRESENTATION: A 66 year old man presented with the sudden onset of autoimmune hemolytic anemia. Concomitant with a worsening of hemolysis, his initially mild proteinuria and hemoglobinuria progressed. On admission, laboratory tests revealed that he was positive for hepatitis C virus in his blood, though his liver function tests were all normal. The patient displayed cryoglobulinemia and hypocomplementemia with cold activation, and exhibited a biological false positive of syphilic test. Renal biopsy specimens showed signs of immune complex type nephropathy with hemosiderin deposition in the tubular epithelial cells. CONCLUSIONS: The renal histological findings in this case are consistent with the deposition of immune complexes and hemolytic products, which might have occurred as a result of the patient's underlying autoimmune imbalance, autoimmune hemolytic anemia, and chronic hepatitis C virus infection

    Local immune regulation of mucosal inflammation by tacrolimus

    Get PDF
    Purpose: Tacrolimus is a potent immunomodulator that is effective in the treatment of inflammatory bowel disease (IBD). However, potential toxicity and systemic effects with oral intake limit its use. Local tacrolimus treatment is effective in a subgrou
    • …
    corecore