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ABSTRACT: We present the Infobiotics Workbench (IBW), a
user-friendly, scalable, and integrated computational environment
for the computer-aided design of synthetic biological systems. It
supports an iterative workflow that begins with specification of the
desired synthetic system, followed by simulation and verification of
the system in high-performance environments and ending with the
eventual compilation of the system specification into suitable
genetic constructs. IBW integrates modeling, simulation, verif ication,
and biocompilation features into a single software suite. This
integration is achieved through a new domain-specific biological
programming language, the Infobiotics Language (IBL), which
tightly combines these different aspects of in silico synthetic biology
into a full-stack integrated development environment. Unlike existing synthetic biology modeling or specification languages, IBL
uniquely blends modeling, verification, and biocompilation statements into a single file. This allows biologists to incorporate design
constraints within the specification file rather than using decoupled and independent formalisms for different in silico analyses. This
novel approach offers seamless interoperability across different tools as well as compatibility with SBOL and SBML frameworks and
removes the burden of doing manual translations for standalone applications. We demonstrate the features, usability, and
effectiveness of IBW and IBL using well-established synthetic biological circuits.

As DNA sequencing and synthesis technology become
cheaper and more easily accessible,1 the scale and

complexity of engineering biology projects is set to grow.
Furthermore, rapidly converging biotechnology and computing
science are accelerating the adoption of synthetic biology
across scientific disciplines as well as industrial applications.
Some of the rapid progress being made include advances in
genome editing via CRISPR-Cas9 variants (e.g., refs 2, 3),
biomedical materials design,4 biofilms engineering as nano-
factories,5 synthetic biology routes to functional materials,6

environmental remediation,7 the engineered transformation of
an E. coli strain so it can manufacture all its carbon biomass
directly via CO2 consumption,8 novel biomedical sensors,9 to
the creation of in vivo DNA-based memory devices.10 These
advances have also prompted progress in computer aided
biology, ranging from computational simulations,11−14 to
metabolic engineering optimization tools,15 new domain
specific languages from describing engineered circuits,16 to
new biological barcodes for version control systems of living
cells.17 Along with rapid developments in this field, a number
of software suits for modeling and analyzing synthetic biology
have been developed. Among these tools are iBioSim,18

Cello,19 Gro,20 Tinkercell,21 Eugene,22 and Proto.23

Yet, contemporary progress in synthetic biology is largely
driven by a cumbersome trial and error cycle in the laboratory.

Various computational tools, which include computer aides for
designing and analyzing synthetic biological circuits, have been
released to assist this development process. These tools
commonly support a specific functionality, such as genetic
design specification, sequence specification, or simulation. For
example, Gene Designer,24 Eugene,25 GenoCAD,26 GEC,27

MoSeC,28 and PartsGenie29 allow a user to express, and in part
compile, genetic sequence designs. Other tools, such as
COPASI30 and VCell,31 support biomolecular simulation.
Interoperability between these tools is often impractical due to
the lack of a common file format able to capture the
information required by each individual tool. There have
been attempts to capture their common semantics through
standard meta-languages such as SBOL32 and SBML,33 but it is
difficult to reverse-translate the low-level description obtained
from one tool into the input required by the next. Full
interoperability, while a laudable task, is very difficult to
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achieve. The Clotho toolset was an attempt to create a fully
integrated set of app-style tools,34 but the software develop-
ment difficulties for such a project are very significant. When
taking biological constructs from idea to working prototype
through a series of refinements, it becomes increasingly harder
to maintain the various formal specifications while ensuring
that each of them is up-to-date and consistent with every other
object models.
Because of the difficulty in interoperability, synthetic

biologists are typically forced to either dispense with some of
the available tool support or work with a set of independent
formalizations of their synthetic design specificationsin
which case crucial details may be lost.
In this paper, we present the Infobiotics Workbench (https://

infobiotics.org), a computer-aided design suite for synthetic
biology that assists synthetic biologists in an informed, iterative
workflow of system specification, verification, simulation, and
biocompilation. The Infobiotics Workbench (IBW) features a
unique domain-specific Infobiotics Language (IBL), which
integrates these different computational aspects into a single
specification file. Unlike conventional approaches, IBL defines
a simple combined grammar for modeling, verification, and
biocompilation statements, which would otherwise require
using complex formalisms and sophisticated transformations
for utilizing independent tools and performing different
computational analyses. This novel approach offers seamless
interoperability across different tools as well as compatibility
with SBOL and SBML frameworks and removes the manual
translation requirement for standalone applications.
IBW replaces an older version.35 It now presents several new

state of the art features, including (i) an intuitive and
expressive synthetic biology design language, (ii) a simulation
component that implements all the variants of Gillespie’s
stochastic simulation algorithms (SSA), (iii) a prediction tool
that selects the best performing SSA using machine learning
algorithms, (iv) a parallel implementation of Gillespie
algorithms executed on cloud GPU clusters, (v) a verification
component that allows verifying queries and design require-
ments using natural language queries, (vi) a biocompilation
module that allows automated compilation of a specified
synthetic circuit into eventual genetic sequence information
and (vii) import from/export to standard data exchange
formats, e.g., SBOL and SBML. This makes IBW a unique
platform that integrates these unique features. A comprehen-
sive comparison of IBW with the existing tools is provided in
Table S1 of the Supporting Information.
The workbench adopts well-established design principles

that guide both experienced and nonexperienced biologists in
refining a putative functionality into a formally specified
document for fabricating a nucleotide sequence after under-
going some computational analysis.
IBW’s unique features are underpinned by strong theoretical

foundations spanning advanced stochastic simulation algo-
rithms, high-performance computing, formal verification,
ontology languages, biological property mining, constraint
satisfaction algorithms, and machine learning.

■ RESULTS AND DISCUSSIONS
The Infobiotics Language. Infobiotics Workbench

(IBW) relies on the Infobiotics Language (IBL), a domain-
specific language based on synthetic biology. IBL is very
unique in the sense that it integrates all computational tasks
into one single language. Namely, it gives directives that

indicate what simulations to run, what verifications to
calculate, and what synthetic circuits to biocompile. Integrating
these directives into the same domain-specific language enables
us to fully support an engineering-inspired workflow of
iterative design, simulation, verification, and compilation of
synthetic biological systems.
IBL has used terms from ontologies available in the

literature, e.g., SBOL32,36 and SyBiOnt37 as well as Gene
Ontology38 and Sequence Ontology.39 The language has also
been complemented with particular terms that are tailored to
the potential user base such as RULEs to capture chemical
reactions and PROCESSes to reuse (groups of rules) and
provide a more abstract representation (and decomposition) of
complex processes (see Figure 1).

IBL provides statements to declare biological entities and
their interactions along with statements to (a) annotate
PROCESSes with stochastic rates for stochastic simulation;
(b) annotate PROCESSes, DEVICEs, and CELLs with
verification statements to be verified; and (c) annotate
GENEs, PROMOTERs, and other biological entities with
sequence information or links to online repository entries
required for biomatter compilation. IBL further allows the
annotation of designs with custom information for use-cases
not directly supported by the core language.
IBL permits a robust encapsulation and hierarchal structure

of biological entities (see Figure 1). The language has the
following structure:

• Molecular species represent any entity, from PROTEIN
to DNA to MOLECULE.

• RULEs are used to define a transformation, most often a
chemical transformation.

• PROCESSes are collections of RULEs. They make it
easier to reuse rules and typically represent a more
abstract process, e.g., constitutive protein expression.

• DEVICEs are collection of PROCESSes and RULEs.
They refer to device in the synthetic biology sense: a
piece of DNA made up of parts.

• SYSTEMs contain DEVICEs and RULEs.
• PLASMIDs are collections of SYSTEMs, DEVICEs and

RULEs. They are useful when more than one type of
plasmid is used in the cell.

• CHROMOSOMEs are collections of SYSTEMs, DE-
VICEs, and RULEs.

• CELLs refer to biological cells. They are a collection of
PLASMIDs, SYSTEMs, DEVICEs, PROCESSes, and
RULEs.

Figure 1. Hierarchical representation of biological entities. A RULE
represents a chemical reaction; a PROCESS is a group of rules and
provides a more abstract representation (and decomposition) of
complex processes; a DEVICE refers to an assembly of genetic parts
and biological building blocks; a CELL represents a bacterial cell.
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• REGIONs contain CELLs, PROCESSes, RULEs, and
molecular species.

IBL allows the user to declare common biological parts,
including PROMOTER, GENE, RIBOSOME, TERMINA-
TOR, CLONING SITE, DNA, RNA, and RBS with optional
declaration of sequences either in online repositories or in a
built-in database as well as nongenetic molecular components
such as PROTEIN and MOLECULE (see Algorithm 1). Thus,

declared biological parts can be connected to each other via
reaction rules, which can be declared as either reversible or
irreversible. Since complexification is particularly important in
biological systems, e.g., in the quaternary structure of proteins
or genetic regulation, complexes can be used in rules without
the need to explicitly declare them.
To ease the integration of experimental knowledge, IBL

supports specification of concentrations and reaction rate
constants in SI units and automatically converts between
units where possible. Concentrations can be specified in molar
(i.e., mol/liter), millimolar, micromolar, and nanomolar units.
Alternatively, concentration can also be specified as an amount
of molecules, which can be interconverted with molar
concentration using a defined cell volume (which defaults to
one femtoliter). Similarly, reaction rate constants can be
specified in the units per second, per minute, and per hour in
case of unimolecular reactions, or per mole per second, etc. for
bimolecular reactions.
As an example, consider the regulation of the Plac promoter

by LacI. The IBL segment shown in Algorithm 2 first declares
the LacI protein and its reversible dimerization reaction (lines
1−4), followed by the promoter and the reversible regulator
binding (lines 5−8).

To support scalable, modular, and reusable designs, IBL
allows for the declaration of PROCESS, which groups together
a set of rules involving abstract biological entities (see

Algorithm 1). Once defined, processes can be instantiated
for specific components. For example, one can specify a
process that collects all of the reactions that constitute general
regulated gene expression, which then can be instantiated for
different transcription factors and genes. In this manner,
processes introduce a layer of modularity and abstraction
similar to function declarations in imperative programming
languages. This is particularly convenient in conjunction with
an “import” statement that allows references to process
definitions across files. In this manner, general purpose
libraries for recurrent biological processes can be built and
later reused to declare specific biological circuits with relatively
little effort.
In addition to PROCESS, IBL also provides the means to

group molecules, rules, and process instantiations into
DEVICE (see Algorithm 3) to capture the action of an entire
genetic device, i.e., a strand of DNA containing several
promoters, genes, and their encoded proteins.

In addition to logical encapsulation, IBL supports physical
encapsulation of molecules, processes, and devices into CELLs,
as well as colocation of molecules, rules, processes, and cells
into REGIONs. By default, cells and regions physically
separate molecules by introducing boundaries. However, IBL
supports mechanisms to define translocation of molecules from
cells into regions and vice versa, which allows for expressing
secretion and uptake processes as well as cell-to-cell
communication. Thus, IBW can model populations of
potentially mixed bacterial cohorts. Algorithm 4 gives an
example.

IBL also allows incorporating verification and biocompila-
tion directives into various compartments, e.g., devices, cells
and processes, to make sure that certain constraints are met at
the design stage. For example, the following verification and
compilation statements in Algorithm 5 can be added within the
device defined in Algorithm 3.
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The Infobiotics Workbench. IBW (https://infobiotics.
org) provides an in silico laboratory for synthetic biology and a
single, integrated, user-friendly, computer aided design plat-
form for Synthetic Biology parts and devices.
A screenshot of the IBW user interface is shown in Figure 2.

IBW provides support for the specification of synthetic devices,
their simulation, verification, and biomatter compilation.
Simulation. IBW features two types of simulation environ-

ments.
CPU-Based Simulation. NGSS40 is a high performance

CPU-based simulation environment, which implements eight
exact and one approximating variant of Gillespie’s stochastic
simulation algorithm (Direct Method (DM), Optimized DM,
Sorting DM, Logarithmic DM, Partial Propensity DM, Next
Reaction Method, First Reaction Method, Composition
Rejection, and Tau Leaping).
Depending on the simulated reaction network, runtime

performance of these algorithms was found to differ by orders
of magnitude with no single winning strategy that would
outperform competitors on all model systems. Using machine
learning techniques, we are able to predict the best performing
simulation algorithm for a given reaction network.
Our method relies on representing stochastic models as

graphs of dependencies between reactions or species. Using
these graphs, we are able to build a topological profile of each
model (e.g., number of vertices and edges, graph density, graph

degree etc.). Machine learning algorithms can learn how these
topological and graph-theoretic features of the underlying
network of a model affect the simulation time of SSAs by
analyzing the performance (reactions executed per second of
CPU time) of each algorithm measured using benchmark
models (obtained from the BioModels databased41). The
predictor performs a model topology analysis and uses the
results to predict the fastest SSA for that model.
We have implemented this method as a performance

benchmarking suite, SSA Predictor,13 which allows for a direct
and unbiased comparison of stochastic simulation algorithms.
SSA Predictor is fully integrated in IBW. So, when a model is
simulated, IBW automatically chooses the fastest predicted
SSA algorithm, and performs the simulation using this
algorithm.
Apart from being implemented for best performance, the

simulator also employs MPI to distribute multiple simulation
runs on computing clusters and OpenMP for multicore
systems.

GPU-Accelerated Simulation. IBW also integrates a GPU
parallel implementation of the Gillespie SSA, taking advantage
of the CUDA platform. The implementation is designed to run
in an HPC environment, with which IBW communicates for
submitting simulation requests and retrieving results. The
performance of the GPU implementation of the Gillespie SSA
mainly comes from computing the species evolutions for all the
runs, in parallel, for each individual time point. Moreover, it
also takes advantage of the parallel implementation for other
different internal processes from the Gillespie SSA workflow,
such as using the Hillis Steele algorithm42 for computing the
propensity prefix sums.

Figure 2. A screenshot of IBW in its biocompilation perspective. The integrated development environment features a project navigator (left),
source code editor (top center), biocompilation controller (right) and compilation result window (bottom center). The toolbar and menu provides
access to typical development features including refactoring and collaborative versioning tools such as git.
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GPU provides significant performance gains compared to
the CPU counterpart. As Figure 3 suggests, the GPU simulator
provides a significant performance gain compared to the CPU
simulator.

Verification. Designing biological systems can be complex,
and molecular interactions that could disrupt the entire
system’s behavior are easy to miss. To guard against such
design flaws, IBW provides the means to annotate designs with
verification statements that the behavior of the specified circuit
must satisfy.
Formal verif ication describes a family of techniques for

exhaustively analyzing the logical correctness of a system. The
essence of formal verification is analyzing a logical requirement
(typically stated in temporal logic43,44) against all possible
behaviors of the system in question. Formal verification is a
well-established research field, and it has many applications,
e.g., safety-critical systems,45 concurrent systems,46 distributed
systems,47 network protocols,48 stochastic systems,49 multi-
agent systems,50,51 pervasive systems,52−54 swarm robotics,55

and biology56 as well as some engineering applications.57−59

Formal verification is used to validate the system correctness
in relation to a desired functionality. In conventional validation
methods, the analysis of system behavior mainly relies on
“simulation”. However, many important system properties
cannot be inferred using simulation. Also, simulation does not
guarantee that the system is error-free and reliable because
simulation can only show “presence of errors, not their
absence”.
Verification statements allow checking for high-level proper-

ties and are thus comparable to unit and integration tests in
software development. By integrating verification in the core
IBL specification, we ensure that test cases can be defined at or
near the point of process definition. This prevents potential
divergence of specification and verification, which can easily
occur in continuous development.
Commonly, verification statements are expressed using

temporal logics.60−62 However, devising correct temporal
logic clauses for an intended verification statement can

introduce an undesired layer of complexity. To ease
verification, IBL therefore allows the user to express statements
as text-based natural language narratives.
The verification component has another important feature.

It provides a set of so-called property patterns based on the
most frequent properties in biology.56,63 The idea is to
categorize most recurring properties into a pattern system by
defining a generic representation of instances of numerous
properties in the literature.
To identify the most relevant and frequent patterns, we have

extensively surveyed the case studies addressing the formal
analysis of biological and biochemical systems and derived the
property patterns for a variety of common verification
scenarios. In Algorithm 6, we provide some example patterns
currently implemented in IBW.

Users can integrate verification in their design workflow by
instantiating any of these verification statements (presented in
Algorithm 6) in IBL models. By tweaking the variables in these
patterns they obtain the desired system properties that are
required to be satisfied. The verification results indicate that
the model either satisfies the properties or that it violates them.
A model does not satisfy the properties if the model has an
error (e.g., sufficient amount of proteins cannot be produced)
or the design is faulty (e.g., certain proteins are never
produced). For the former case, the user should refine the
model parameters and then repeat the entire process. For the
later case, the verification results can be considered as a
counterexample and used to revise the design of the system.
IBW automatically translates the verification statements into

the syntax of the corresponding temporal logics, which is then
delegated to model-checking tools for exhaustive formal
verification. The type of property pattern thereby dictates
the choice of the verification tool. Currently, IBW interfaces
with both nonstochasticNuSVM64and stochastic
PRISM,65 MC266model-checking tools to check qualitative
and quantitative properties, respectively. Stochastic model
checkers are useful to verify properties about the likelihood of
the observation of certain behavior, whereas nonstochastic
model checkers are useful when quantitative analysis might not
be needed if, for example, we only want to observe the
detection of molecular species rather than measuring their
concentration. In such cases, we can only rely on qualitative
analysis, where we can apply some abstraction methods, e.g.,
removing kinetic constants from stochastic models, to reduce
the model complexity.
Although formal verification is very useful for system

analysis, it has a major drawback: state explosion problem,67

meaning that the state space grows so quickly that model
checking cannot stay scalable. This is especially the case for

Figure 3. Performance benchmark comparison of IBW’s CPU and
GPU simulators using the quorum sensing model (see Quorum
Sensing section). The GPU simulator provides a much faster and
efficient alternative compared to the CPU simulator (implementing
serial algorithms) as it uses parallel algorithms, run in high
performance environments.
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large models (very common in biology) because model
checkers search this large state space exhaustively.
IBW adopts the best practices and new research develop-

ments in this field to make the verification process much faster
and very efficient for the users. Unlike safety critical systems,
where even one in a billion chance of system failure cannot be
allowed, biological systems are more tolerable to approximate
results based on a high confidence value. So, instead of using
analytic methods that calculate precise results, we can use
statistical methods that provide approximate results based on a
confidence interval. For this reason, when performing
verification, wherever possible, IBW uses statistical model
checking.68 The core idea of statistical model checking is to
simulate the system for finitely many runs according to the
distribution defined by the system, and use hypothesis testing
to infer whether the samples provide a statistical evidence for
the satisfaction or violation of the specification.69 Since the
state space is explored partially, the performance is increased.
Due to its advantage on scalability, statistical model checking
offers much faster results.
We improve statistical model checking further by taking

advantage of our GPU parallel implementation of the Gillespie
SSA running in an HPC environment. The significant
performance gain obtained in our simulations reported in the
Simulation section is also utilized in the verification process.
IBW reduces the verification time even further by allowing

the user to constrain verification statements to system
submodules, including individual cells, devices, and processes.
This can be done by simply placing the verification statement
in the cell, device, or process in question. Verification will then
be performed only for the submodule that the statement
occurs in. This provides significant performance gains
compared to conventional approaches, where verification is
applied to the whole system.
All these state of the art solutions make IBW one of the

fastest and the most scalable tools available in the verification
of large biological systems.
Biocompilation. Subsequent to successful verification and

simulation, the design must be mapped to specific nucleotide
sequences that can be produced and incorporated into host
cells. IBW allows for automated compilation of a specified
synthetic circuit into eventual genetic sequence information by
interfacing with the ATGC70 (Assistant To Genetic Compila-
tion) component. With no user intervention, ATGC: (a)
completes abstract device specifications by adding ribosome
binding sites (RBS), spacers and effective terminators, (b)
finds a viable arrangement of the parts by solving an equivalent
integer optimization problem, and (c) finds the parts’
sequences either in online repositories (e.g., iGem) or in a
built-in database, populated by parts from Biofab71 and
REbase.72 Unless explicitly stated, RBS sequences are
generated with Salis’ RBS calculator73 and a user-specified
initiation translation rate. ATGC thus automatically produces a
biologically plausible sequence reflecting the original aim of the
user. A number of ATGC directives allow the user to control
its output. The types of constraints available at present (to
increase in the future) were directly inspired by situations
encountered by experimentalists. For example, one such
directive controls, the automatic insertion of cloning sites.
Since cloning sites are noncoding sequences, they are typically
not present in high-level specifications, which primarily model
the dynamics of gene expression. Instead, the user employs an
ATGC directive that inserts a placeholder for a restriction site

whose sequence is calculated by the biocompiler from a large
curated database of restriction enzymes. The biocompiler
ensures that the chosen cloning site sequence does not appear
in other parts of the full sequence. In particularly constrained
situations, ATGC will perform codon replacement in order to
find a solution. Other directives allow existing DNA fragments,
which may already contain several components, to be reused.
The tool takes into consideration the bidirectionality of
double-stranded DNA, which allows certain devices to be
present in each of the two strands. This mimics the
optimization present in natural devices.

Compatibility with Other Standards. After an IBL
model is optionally biocompiled, the user has the option of
exporting it as SBOL (supporting two modes of export one
with compiled sequences and one without)32 or SBML,33

which are both compatible with a growing number of synthetic
biology softwares. For example, j574 can take an SBOL input
and produce an assembly protocol for the construct, which is
typically the next step after designing the DNA sequence. In
addition to the export feature, IBW can also import from
SBOL and SBML, generated by other tools, e.g., iBioSim18 and
Cello.19

The import IBW functionality takes as input an SBML/
SBOL model and translates its different entities into their
equivalent IBL representation. The translation from SBML/
SBOL to IBL is implemented in Java and features the JSBML
(https://github.com/sbmlteam/jsbml) and LibSBOLj
(https://github.com/SynBioDex/libSBOLj) libraries for pars-
ing SBML and SBOL models, respectively. Upon parsing, the
corresponding abstract syntax tree of the input model is
traversed and the corresponding semantic entities are
converted into their IBL counterparts.
In a similar fashion, the IBW export functionality allows for

an IBL model to be exported into an equivalent SBML/SBOL
representation. The translation from IBL to SBML/SBOL is
also implemented in Java and takes advantage of the JSBML
and LibSBOLj. By traversing the internal IBW data structure
corresponding to the IBL model, each IBL semantic entity is
converted into an equivalent SBML/SBOL semantic (lan-
guage-agnostic) data structure, which is constructed using Java
classes defined in the above-mentioned libraries. Once a
semantic SBML/SBOL data structure is obtained, the final
SBML/SBOL (XML-formatted) models are generated by
taking advantage of the same libraries.
SBOL conversion captures the structural information and

hierarchy of the IBL model. This hierarchy (approximately
region → cell → molecule/device) is translated into SBOL
objects, and if the model is further biocompiled, biocompila-
tion specific information (sequences, cloning sites, and
ribosome-binding sites) are also retained. However, SBOL
omits numerical information like concentrations, rate con-
stants, compartment sizes, and units. This prevents the SBOL
model from being simulated and verified. On the other hand,
SBML conversion captures functional aspects of the IBL
model, which includes the previously mentioned numerical
information. SBML also allows us to retain the structural
hierarchy, although biocompilation-specific features like DNA
structures cannot be expressed.
IBW targets these shortcomings by making all computational

features accessible to the SBOL and SBML communities. We
note that IBL is a true programming language to be used by
humans to program biology, whereas SBOL and SBML only
provide data models, and are not biological programming
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languages. IBL can be compiled down to SBOL and/or SBML
for standardized exchange but in doing so information that is

currently captured by IBL will be lost, e.g., information about
verification or biocompilation constraints.

Figure 4. Four sequential stochastic simulations of the toggle switch. In the first simulation, the cell is suspended in IPTG, leading to the activation
of the switch and production of GFP (green trace) and CI (red trace). In the second one, CI and GFP production is maintained despite the
absence of IPTG. In the third simulation, the cell is suspended in aTc, leading to the deactivation of the switch, production of LacI (blue trace) and
decay of GFP. In the final one, the switch resides in its off state despite the absence of aTc. Traces show the mean and standard deviations of 50
simulation runs.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00143
ACS Synth. Biol. 2021, 10, 1931−1945

1937

https://pubs.acs.org/doi/10.1021/acssynbio.1c00143?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00143?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00143?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00143?fig=fig4&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00143?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


We note that ShortBOL75 has been recently introduced to
generate SBOL files using a human readable language.
However, it is not a comprehensive programming language
like IBL. It does not capture the functional information (i.e.,
behavioral models at the molecular level). Also, some unique
elements of IBL, e.g., verification and biocompilation state-
ments, cannot be expressed in ShortBOL.

■ METHODS
Implementation. IBW has been implemented as an

Eclipse rich client application using Xtext as a domain specific
language framework. It is released under the MIT license and
both user and developer IBW editions can be obtained from
https://infobiotics.org.
Case Studies. We demonstrate the applicability of IBW

and IBL using a number of case studies from the literature:
Gardner et al.’s “toggle switch”,76 Elowitz and Leibler’s
“repressilator”,77 Dockery and Keener’s “quorum sensor”,78

and Myers’ “logic gates”.79 For each case, we discuss the
respective IBL specification, along with its verification,
simulation, and biocompilation results. The parameters used
in the experiments are presented in the Performance
Evaluation section. The case studies can be accessed at
https://infobiotics.org/casestudies/casestudies.html. The
source files as well as the experimental data used in this
paper are available to download at https://infobiotics.org/_
static/experiments_2021.06.11.zip.
The Toggle Switch. The toggle switch is a seminal synthetic

biological circuit that consists of two mutually repressing
operons,76 with lacI being regulated by a Plambda promoter
and cI (a repressor of Plambda) being in turn regulated by
Plac. The operon that codes for CI also codes for green
fluorescent protein (GFP). Using this repressor pair allows the
toggle switch to be activated by induction via IPTG and
deactivated via aTc. The negative feedback cycle ensures that
the switch maintain its on- or off-state even when the triggering
inducer is washed out. The bistable behavior of the switch
depends on the cooperativity of the repressor proteinsmore
specifically, on the right choice of regulators and promoters
and their correct dimerization. Modeling with IBW can help
develop a feasible design.
We simulate the toggle switch in four separate scenarios. We

first suspended the cell in a region rich in IPTG and simulate
its response in CI, LacI, and GFP production over a period of 1
h. We then use the average of the total CI, LacI, and GFP
concentrations as initial values for CI, LacI, and GFP for
simulation of the cell in an IPTG-depleted region. Again, the
average final state after 1 h is used to initialize the cell state in a
region rich in aTc, a.s.o. The averages and standard deviations
of 50 simulation runs each are shown in Figure 4.
Verification is used to check the correctness of the system

and to validate the system requirements using the probabilistic
model checkers (see Table 1). The first property verifies that
the suspension of the cell with IPTG will lead to the
production of GFP. The second property verifies that once the
cell is suspended with IPTG, the GFP concentration will
eventually exceed 7.5 μM with a probability of 0.82. The third
property verifies that GFP is produced at least three times
more than CI despite the absence of IPTG with a probability
0.99. The fourth property verifies that the GFP production will
decline if the cell is suspended with aTc.
To obtain a viable genetic sequence that implements the

toggle switch, all that needs to be done is specify the sequences

of the two promoters and three regulated proteins. We do this
in IBW by pointing to the respective iGEM registry parts:
BBa_R0010 for Plac, BBa_R0051 for Plambda, BBa_K105004
for cI, BBa_E0040 for gfpmut3, and BBa_C0012 for lacI. To
reproduce a genetic arrangement of the published system, we
introduce two compilation constraints that ensure that the
second repressor operon is inverted (ATGC DIRECTION:
BACKWARD in the respective device) and that the two
promoters are adjacent to each other (ATGC ARRANGE
Plambda,Plac).
The ATGC biocompiler automatically fetches the sequence

information, adds ribosome binding sites and terminators and
assembles the concatenated gene sequence in accordance with
the given layout constraints. The result of the biocompilation
run is shown in Figure 5.

The Repressilator. An equally seminal early synthetic
biological device is a synthetic genetic oscillator termed the
“repressilator”.77 Similar to the previous toggle switch, the
repressilator consists of mutually repressing repressors, but this
time it features three instead of two chained interacting
operons. As a result, none of the promoter activation states
remains stable and the operons sequentially activate and
inactivate each otherresulting in continued global oscil-
lations.
Stochastic simulation confirms continued oscillations of the

regulating proteins LacI, CI, and TetR (cf. Figure 6).
We can validate some system behavior using verification (see

Table 2). Property 1 and 2 query the oscillatory behavior of
LacI by checking the LacI concentration going below and
above 1.25 μM repeatedly (with a probability 0.48 and 0.52,
respectively). Property 3 verifies that the steady state
concentration of CI is between 0.5 and 2 μM with probability
0.92.
The biocompiler output is shown in Figure 7.
Quorum Sensing. Quorum sensing is an ability expressed

by certain bacterial species where a shift in population density
leads to changes in gene expression. More specifically,
Pseudomonas aeruginosa relies on a quorum sensing system
comprised of two genes, lasR and lasI.78 lasR codes for a
transcriptional activator protein that is activated by 3-oxo-C12-
HSL, an autoinducer synthesized by lasI. Their dimer
promotes both lasI and lasR activity. At higher cell densities,
the concentration of 3-oxo-C12-HSL rises, which leads to
changes in P. aeruginosa associated with population density.
In the previous two case studies, we have shown how

simulation and verification can be used together. The system
dynamics can actually be analyzed using verification alone. In
Table 3, we provide a list of queries that we can ask the model.
For instance, one can verify the appearance of LasR later in the
system, but not at the beginning, i.e., the system will eventually
lead to the production of the LasR protein (Property 1). The
very same property can also be verified for 3-oxo-C12-HSL

Table 1. Verified Properties

# verification statement result

1 VERIFY [IPTG ≥ 10 μM] IS FOLLOWED BY [GFP > 7.5
μM]

T

2 VERIFY [IPTG ≥ 10 μM] IS FOLLOWED BY [GFP > 7.5
μM] WITH PROBABILITY ?

0.82

3 VERIFY [IPTG = 0 μM] IS FOLLOWED BY [GFP/CI > 3]
WITH PROBABILITY ?

0.99

4 VERIFY [GFP] EVENTUALLY DECREASES WITH
PROBABILITY ? GIVEN [aTc = 100 μM]

1.0
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(Property 2). This query can be complemented by a more
grained analysis such as within a time period some threshold
concentrations for LasR (Property 3) and 3-oxo-C12-HSL
(Property 4) are reached. Finally, we verify it is very likely that
the concentrations remain within an upper and lower bound in
the steady-state (Property 5 and 6). From these results we can
infer that the quorum sensing system works as described.
Genetic Logic Gates. In this section, we will demonstrate

the compatibility of IBW with standard data exchange formats
(e.g., SBML and SBOL). IBW allows the users to upload
SBML/SBOL files. Once such a model file is uploaded, the
tool automatically translates the model to the IBL language.
The users can then edit their model in IBL and add IBL
specific annotations, e.g., verification statements, part informa-
tion, etc., to utilize IBW features in their analysis.

Here, we will import some biological circuits based on logic
gates implemented in SBML.79 In our experiments, we
consider the genetic NOT, AND, and NOR gates. All the
models, originally in SBML, were automatically translated to
IBL.
Each gate is composed of several genetic components,

interacting with each other. For example, the AND gate circuit
receives two proteins, LacI and TetR, as input. LacI and TetR
inhibit two promoters that produce the CI protein. When the
CI concentration goes below a certain threshold level, another
promoter is activated, which produces green fluorescent
protein (GFP) as output. The corresponding kinetic reactions
are described by a number of equations captured in the SBML
models. The circuit designs and their corresponding truth
tables are shown in Figure 8.
Figure 9 shows the stochastic simulations of these gates. The

simulation results show that the circuits exhibit the expected
behavior. For example, for the NOT gate, the GFP
concentration follows an opposite trend of the TetR
concentration. For AND, the GFP concentration starts
increasing as both LacI and TetR concentrations are high in
the beginning; this is followed by a decrease in the GFP
concentration as LacI and TetR concentrations decrease
significantly. Similarly, for the NOR gate, the GFP

Figure 5. Biocompiler result for the toggle switch specification. Sequence information of promoters, coding refions and terminators is drawn from
several online repositories (here the iGem parts registry), and ribosome binding sites are automatically calculated using Salis’ ribosome binding site
calculator.

Figure 6. Simulation traces (mean and standard deviations of 50 runs using tau-leaping) for the LacI (blue), CI (red), and TetR (green) dimers
over 27 h.

Table 2. Verified Properties

# verification statement result

1 VERIFY [LacI ≤ 1.25 μM] HOLDS INFINITELY OFTEN
WITH PROBABILITY ?

0.48

2 VERIFY [LacI > 1.25 μM] HOLDS INFINITELY OFTEN
WITH PROBABILITY ?

0.52

3 VERIFY [CI ≥ 0.5 μM] AND [CI < 2 μM]] HOLDS IN
STEADY-STATE WITH PROBABILITY ?

0.92
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concentration remains very low as LacI and TetR concen-
trations are high; GFP is then observed in high concentration
as both LacI and TetR degrade in time.
Although simulation results are useful to observe the general

behaviors of the circuits, they fall short in determining the
correct Boolean logic function. The challenge here is that the
simulation data do not clearly show the classification of the
threshold concentration levels into the Boolean values, “low”
and “high”.80

To address this limitation, we can utilize verification to make
a more fine-grained analysis and hence can identify more
accurate threshold values for these gates. The verification
statements used in our experiments are presented in Table 4.

Here, we assume the “high” input is achieved if the
concentration of a species exceeds a threshold value (Thr),
e.g., GFP > Thr; similarly, the low input is triggered if the
concentration level goes below the threshold, e.g., GFP < Thr.
The Boolean logic function for each gate is captured by two

verification properties (Table 4). For example, for the AND
gate, the first property means that if the input proteins TetR
and LacI are “high”, the output protein GFP is also “high”,
whereas the second property means if any of the input proteins
is “low”, then the output protein is also “low”.
The verification results are presented in Table 5. Here we

assume that the highest probability result represents the most
desired behavior. Since the Boolean logic function of each gate
is defined by two properties, we consider the product of these
probabilities as the “score” that represents the accuracy of a
gate. The highest score defines the best threshold value. Using
this method, we can also consider/identify different threshold
values for different species.
We note that SBML only captures behavioral models of

biological systems at the molecular level and it does not
contain any genetic information on molecular species. Hence,
there is not any genetic part information imported by IBW to
run the biocompilation. SBOL models, on the other hand,
describe structural and basic qualitative behavioral aspects with
genetic part information, but the current SBOL standards do
not include any quantitative information regarding molecular
dynamics, hindering to run the simulation and verification.

Figure 7. Biocompiler result for the repressilator specification.

Table 3. Verified Properties

# verification statement result

1 VERIFY [LasR] EVENTUALLY INCREASES WITH
PROBABILITY ?

1.0

2 VERIFY [HSL] EVENTUALLY INCREASES WITH
PROBABILITY ?

1.0

3 VERIFY [LasR ≥ 0.1 μM] EVENTUALLY HOLDS WITHIN
[0,1] s WITH PROBABILITY ?

1.0

4 VERIFY [HSL≥ 3 μM] EVENTUALLY HOLDS WITHIN
[0,1] s WITH PROBABILITY ?

1.0

5 VERIFY [[LasR ≥ 0.005 μM] AND [LasR ≤ 0.15 μM]]
HOLDS IN STEADY-STATE WITH PROBABILITY ?

0.98

6 VERIFY [[HSL ≥ 0.05 μM] AND [HSL ≤ 4.2 μM]] HOLDS
IN STEADY-STATE WITH PROBABILITY ?

0.72

Figure 8. Genetic NOT, AND, and NOR gate circuits, and the corresponding truth tables.
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Performance Evaluation. In this section, we provide a
brief performance evaluation of the different steps. Table 6
presents the minimum and maximum times (in seconds) of
each computational step for the case studies presented above.
The simulation experiments have been carried out using the

GPU simulator based on the following VM configurations: 8
GB Memory, 6 Cores, Intel Core i7−4720HQ CPU @ 2.60
GHz. The verification experiments have been carried out using
the statistical model checking which also utilizes the GPU
simulator. As the results show, the simulation and verification
run very fast thanks to the performance improvements
provided the IBW. The biocompilation process for two case
studies took around a minute. This is mainly due to the fact
that all part sequences are obtained from online repositories

(which requires setting up connection with remote servers)
and the biocompilation process runs the RBS optimizer.

■ CONCLUSION

In this paper, we have presented the Infobiotics Workbench, a
computer-aided design suite for synthetic biology, supporting
an iterative workflow that begins with specification of the
desired synthetic system and is followed by simulation and
verification of the system in high-performance environments
and ending with the eventual compilation of the system
specification into a genetic construct.
IBW features a unique domain-specific language, providing a

simple combined grammar for modeling, verification, and
biocompilation statements. This novel approach offers

Figure 9. Simulation results. (a) NOT gate. (b) AND gate. (c) NOR gate.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00143
ACS Synth. Biol. 2021, 10, 1931−1945

1941

https://pubs.acs.org/doi/10.1021/acssynbio.1c00143?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00143?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00143?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00143?fig=fig9&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00143?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


seamless interoperability across different tools as well as
compatibility with SBOL and SBML frameworks and removes
the manual translation requirement for standalone applica-
tions.
We have shown the usability and applicability of the

language and software using a number of case studies, toggle
switch, repressilator, quorum sensing, and logic gates. For each
case study, we have discussed the respective IBL specification,
along with its verification, simulation, and biocompilation
results.
IBW has quite unique features, but the current version has

also some limitations. Currently, the language does not support
multicellular bacterial populations. The tool can neither predict
missing model parameters (e.g., kinetic rates) nor optimize
them. Our SBOL translator relies on the information provided
in an SBOL file. If a part “role” is missing in the SBOL file, the
translator cannot predict the role type, and assigns
“UNKNOWN” role in the IBL translation, leaving this to the
user to change manually. Also, the biocompiler only uses RBS
optimizer; it does not do any other DNA optimization.
In our future work, we aim to extend the IBL language with

a “spatial” dimension, so as to be able to represent specific
geometries and strains. These will allow IBL to model specific
formations, e.g., biofilm coatings, and deal with large spatially
distributed bacterial colonies. This extension entails investigat-
ing spatiotemporal logics and verification methods for
synthetic biology. We will develop a web version of IBW to
provide a more intuitive interface for experimental biologists.
We will work on improving the RBS optimizer, which will
reduce the biocompilation time. We will also broaden the
spectrum of case studies. We will, in particular, explore more
systems on synthetic drug design.
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Table 4. Properties Verified for Each Gatea

circuit # verification statement

NOT 1a VERIFY [TetR > Thr molecules] IS FOLLOWED BY [GFP
< Thr molecules] WITH PROBABILITY ?

1b VERIFY [TetR < Thr molecules] IS FOLLOWED BY [GFP
> Thr molecules] WITH PROBABILITY ?

AND 2a VERIFY [[TetR > Thr molecules] AND [LacI > Thr
molecules]] IS FOLLOWED BY [GFP > Thr molecules]
WITH PROBABILITY ?

2b VERIFY [[TetR < Thr molecules] OR [LacI < Thr
molecules]] IS FOLLOWED BY [GFP < Thr molecules]
WITH PROBABILITY ?

NOR 3a VERIFY [[TetR > Thr molecules] AND [LacI > Thr
molecules]] IS FOLLOWED BY [GFP < Thr molecules]
WITH PROBABILITY ?

3b VERIFY [[TetR < Thr molecules] OR [LacI < Thr
molecules]] IS FOLLOWED BY [GFP > Thr molecules]
WITH PROBABILITY ?

aThr represents a threshold value.

Table 5. Verification Results with Respect to the Threshold
(Thr) Value for Each Gatea

NOT

Thr Prob1a Prob1b score

5 0.69 0.95 0.66
10 0.99 0.85 0.84
15 1.0 0.77 0.77
20 1.0 0.65 0.65
25 1.0 0.55 0.55
30 1.0 0.50 0.50

AND

Thr Prob2a Prob2b score

5 1.0 0.18 0.18
10 1.0 0.47 0.47
15 0.98 0.76 0.74
20 0.98 0.90 0.88
25 0.96 0.96 0.92
30 0.95 0.97 0.92

NOR

Thr Prob3a Prob3b score

5 0.96 0.82 0.79
10 0.99 0.70 0.69
15 1.0 0.59 0.59
20 1.0 0.39 0.39
25 1.0 0.19 0.19
30 1.0 0.13 0.13

aScore is calculated by multiplying the probabilities obtained for two
properties (e.g., 1a and 1b).

Table 6. Simulation, Verification, and Biocompilation
Times of the Case Studiesa

case study simulation (s) verification (s) biocompilation (s)

toggle switch [0.11, 0.26] [0.58, 0.91] 64
repressilator [11.12, 13.56] [12.9, 13.43] 59
quorum sensing [12, 15] [0.57, 0.68]
logic gates [0.10, 0.17] [1.45, 4.5]

aThe experiments have been carried out using the following
parameters: toggle switch: number of runs: 50, max time: 1000 s,
interval: 10 s; repressilator: number of runs: 50, max time: 97 200 s
(27 h), interval: 500 s; quorum sensing: number of runs: 50, max
time: 10 ms, interval: 1 ms; logic gates: number of runs: 100, max
time: 500 s, interval: 1 s.
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