177 research outputs found
Visible-band and IUE observations of mu Sagittarii
H alpha and U band photometry and IUE spectra of the binary system mu Sagittarii are discussed. An estimate of mass-loss is made from the observed P Cygni profiles. There are indications of pulsation in the supergiant B8 component
X-Ray Emission from the Sun in Its Youth and Old Age
We have obtained ROSAT PSPC (Roentgen Satellite Position Sensitive Proportional Counter) pointed observations of two nearby G stars of ages 70 Myr and 9.5 Gyr that are of unique importance as proxies for the Sun at the two extremes of its main-sequence evolutionary lifetime. The younger star, HD 129333 (EK Dra; G0 V), a rapid rotator with a 2.7 day period, is a strong source with an X-ray luminosity L(x)(0.2-2.4 keV) = (7.5-11.5) x 10(exp 29) erg/s. Modeling suggests a two-temperature corona with T(1) = (2.0 +/- 0.3) x 10(exp 6) K and T(2) = (9.7 +/- 0.3) x 10(exp 6) K (formal uncertainties). A continuous emission measure distribution, increasing to higher temperatures and with a cutoff at (20-30) x 10(exp 6) K, yields even better fits to the data. The old star, beta Hyi (HR 98; G2 IV), represents the Sun in the future, near the end of its hydrogen-core burning stage, when it should be rotating more slowly (present P(rot) = 25.4 day) and should have lower levels of activity. The ROSAT measurements yield L(x) = (0.9-3.0) x 10(exp 27) ergs/s and a rather cool, single coronal temperature of T = (1.7 +/- 0.4) x 10(exp 6) K. For comparison, the Sun has L(x) approx. equal to 2 x 10(exp 27) ergs/s and a coronal temperature of about T = 2 x 10(exp 6) K. These stars provide information on the decline of the stellar (and specifically solar) magnetic activity from extreme youth to old age. HD 129333 is also important in that it yields an estimate of the solar soft X-ray flux in the early solar system at the epoch of the terminal stages of planetary accretion
Analysis of filter-assisted 160 Gb/s wavelength converter using a single semiconductor optical amplifier
We present for the first time a systematic analysis of the Q-factor and eye opening for wavelength conversion based on a single semiconductor optical amplifier and a detuned filter at 160 Gb/s
Starspots on the fastest rotators in the Beta Pic moving group
Aims: We carried out high-resolution spectroscopy and BV(I)_C photometric
monitoring of the two fastest late-type rotators in the nearby Beta Pictoris
moving group, HD199143 (F7V) and CD-641208 (K7V). The motivation for this work
is to investigate the rotation periods and photospheric spot patterns of these
very young stars, with a longer term view to probing the evolution of rotation
and magnetic activity during the early phases of main-sequence evolution. We
also aim to derive information on key physical parameters, such as rotational
velocity and rotation period. Methods: We applied maximum entropy (ME) and
Tikhonov regularizing (TR) criteria to derive the surface spot map
distributions of the optical modulation observed in HD199143 (F7 V) and
CD-641208 (K7V). We also used cross-correlation techniques to determine stellar
parameters such as radial velocities and rotational velocities. Lomb-Scargle
periodograms were used to obtain the rotational periods from differential
magnitude time series. Results: We find periods and inclinations of 0.356 days
and 21.5deg for HD199143, and 0.355 days and 50.1deg for CD-641208. The spot
maps of HD199143 obtained from the ME and TR methods are very similar, although
the latter gives a smoother distribution of the filling factor. Maps obtained
at two different epochs three weeks apart show a remarkable increase in spot
coverage amounting to ~7% of the surface of the photosphere over a time period
of only ~20 days. The spot maps of CD-641208 from the two methods show good
longitudinal agreement, whereas the latitude range of the spots is extended to
cover the whole visible hemisphere in the TR map. The distributions obtained
from the first light curve of HD199143 show the presence of an extended and
asymmetric active longitude with the maximum filling factor at longitude
~325degree.Comment: Accepted by A&A. 13 pages, 13 figures (4 online included), 5 Table
Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres
Previous research has indicated that high amounts of ozone (O3) and oxygen
(O2) may be produced abiotically in atmospheres with high concentrations of
CO2. The abiotic production of these two gases, which are also characteristic
of photosynthetic life processes, could pose a potential "false-positive" for
remote-sensing detection of life on planets around other stars.We show here
that such false positives are unlikely on any planet that possesses abundant
liquid water, as rainout of oxidized species onto a reduced planetary surface
should ensure that atmospheric H2 concentrations remain relatively high, and
that O2 and O3 remain low. Our aim is to determine the amount of O3 and O2
formed in a high CO2 atmosphere for a habitable planet without life. We use a
photochemical model that considers hydrogen (H2) escape and a detailed hydrogen
balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the
Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher
UV radiation. The concentrations obtained by the photochemical model were used
as input in a radiative transfer model that calculated the spectra of the
modeled planets. The O3 and O2 concentrations in the simulated planets are
extremely small, and unlikely to produce a detectable signature in the spectra
of those planets. We conclude that with a balanced hydrogen budget, and for
planets with an active hydrological cycle, abiotic formation of O2 and O3 is
unlikely to create a possible false positive for life detection in either the
visible/near-infrared or mid-infrared wavelength regimes.Comment: 27 pages, 15 figures, Astronomy & Astrophysics accepte
Chromospheric activity, lithium and radial velocities of single late-type stars possible members of young moving groups
We present here high resolution echelle spectra taken during three observing
runs of 14 single late-type stars identified in our previous studies (Montes et
al. 2001b, hereafter Paper I) as possible members of different young stellar
kinematic groups (Local Association (20 - 150 Myr), Ursa Major group (300 Myr),
Hyades supercluster (600 Myr), and IC 2391 supercluster (35 Myr)). Radial
velocities have been determined by cross correlation with radial velocity
standard stars and used together with precise measurements of proper motions
and parallaxes taken from Hipparcos and Tycho-2 Catalogues, to calculate
Galactic space motions (U, V, W) and to apply Eggen's kinematic criteria. The
chromospheric activity level of these stars have been analysed using the
information provided for several optical spectroscopic features (from the Ca II
H & K to Ca II IRT lines) that are formed at different heights in the
chromosphere. The Li I 6707.8 AA line equivalent width (EW) has been determined
and compared in the EW(Li I) versus spectral type diagram with the EW(Li I) of
stars members of well known young open clusters of different ages, in order to
obtain an age estimation. All these data allow us to analyse in more detail the
membership of these stars in the different young stellar kinematic groups.
Using both kinematic and spectroscopic criteria we have confirmed PW And, V368
Cep, V383 Lac, EP Eri, DX Leo, HD 77407, and EK Dra as members of the Local
Association and V834 Tau, pi^{1} UMa, and GJ 503.2 as members of the Ursa Major
group. A clear rotation-activity dependence has been found in these stars.Comment: Latex file with 19 pages, 7 figures tar'ed gzip'ed. Full postscript
(text, figures and tables) available at
http://www.ucm.es/info/Astrof/p_skg_stars_I_fv.ps.gz Accepted for publication
in: Astronomy & Astrophysics (A&A
- …