255 research outputs found
Speckle interferometry using a hardwired autocorrelator
Imperial Users onl
Building local capacity in the arts
© 2016 Informa UK Limited, trading as Taylor & Francis GroupThe importance of place-based funding and local policy initiatives is evident in policy literature internationally with concepts of creative cities and cultural regeneration building in prominence since the 1990s. Such literature makes the case that investment in arts and culture will bring broader social and economic benefits at a local level, but in practice investment and research has prioritised a small number of metropolitan arts venues and mega events over a larger rural or community-based infrastructure. This paper in contrast explores two case studies of cultural planning in small towns. It analyses the relationship between policy and practice in these specific community contexts and considers the role of participatory decision-making in developing a local arts infrastructure. The findings suggest that locally based initiatives can build capacity and engagement with the arts. But it further argues that this requires long-term commitment and investment, to facilitate shared decision-making between professionals and public
Sleep State Modulates Resting-State Functional Connectivity in Neonates.
The spontaneous cerebral activity that gives rise to resting-state networks (RSNs) has been extensively studied in infants in recent years. However, the influence of sleep state on the presence of observable RSNs has yet to be formally investigated in the infant population, despite evidence that sleep modulates resting-state functional connectivity in adults. This effect could be extremely important, as most infant neuroimaging studies rely on the neonate to remain asleep throughout data acquisition. In this study, we combine functional near-infrared spectroscopy with electroencephalography to simultaneously monitor sleep state and investigate RSNs in a cohort of healthy term born neonates. During active sleep (AS) and quiet sleep (QS) our newborn neonates show functional connectivity patterns spatially consistent with previously reported RSN structures. Our three independent functional connectivity analyses revealed stronger interhemispheric connectivity during AS than during QS. In turn, within hemisphere short-range functional connectivity seems to be enhanced during QS. These findings underline the importance of sleep state monitoring in the investigation of RSNs
Time domain optical imaging device based on a commercial time-to-digital converter
Time-domain diffuse optical imaging is a noninvasive technique that uses pulsed near-infrared light as the interrogation source to produce quantitative images displaying the variation in blood volume and oxygenation in the human brain. Measuring the times of flights of photons provides information on the photon pathlengths in tissue, which enables absolute concentrations of the oxygenated and deoxygenated forms of hemoglobin to be estimated. Recent advances in silicon electronics have enabled the development of time-domain systems, which are lightweight and low cost, potentially enabling the imaging technique to be applied to a far greater cohort of subjects in a variety of environments. While such technology usually depends on customized circuits, in this article, we present a system assembled from commercially available components, including a low-cost time-to-digital converter and a silicon photomultiplier detector. The system is able to generate histograms of photon flight times at a rate of 81-90 kS/s and with a sampled bin width of 54ps. The linearity and performance of the system are presented, and its potential as the basis for a modular multi-detector imaging system is explored
Delayed gastric emptying and reduced postprandial small bowel water content of equicaloric whole meal bread versus rice meals in healthy subjects: novel MRI insights
BACKGROUND/OBJECTIVES: Postprandial bloating is a common symptom in patients with functional gastrointestinal (GI) diseases. Whole meal bread (WMB) often aggravates such symptoms though the mechanisms are unclear. We used magnetic resonance imaging (MRI) to monitor the intragastric fate of a WMB meal (11% bran) compared to a rice pudding (RP) meal.
SUBJECTS/METHODS: 12 healthy volunteers completed this randomised crossover study. They fasted overnight and after an initial MRI scan consumed a glass of orange juice with a 2267 kJ WMB or an equicaloric RP meal. Subjects underwent serial MRI scans every 45 min up to 270 min to assess gastric volumes and small bowel water content and completed a GI symptom questionnaire.
RESULTS: The MRI intragastric appearance of the two meals was markedly different. The WMB meal formed a homogeneous dark bolus with brighter liquid signal surrounding it. The RP meal separated into an upper, liquid layer and a lower particulate layer allowing more rapid emptying of the liquid compared to solid phase (sieving). The WMB meal had longer gastric half emptying times (132±8 min) compared to the RP meal (104±7 min), P<0.008. The WMB meal was associated with markedly reduced MRI-visible small bowel free mobile water content compared to the RP meal, P<0.0001.
CONCLUSIONS: WMB bread forms a homogeneous bolus in the stomach which inhibits gastric sieving and hence empties slower than the equicaloric rice meal. These properties may explain why wheat causes postprandial bloating and could be exploited to design foods which prolong satiation
Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: A case study
AbstractSeizures in the newborn brain represent a major challenge to neonatal medicine. Neonatal seizures are poorly classified, under-diagnosed, difficult to treat and are associated with poor neurodevelopmental outcome. Video-EEG is the current gold-standard approach for seizure detection and monitoring. Interpreting neonatal EEG requires expertise and the impact of seizures on the developing brain remains poorly understood. In this case study we present the first ever images of the haemodynamic impact of seizures on the human infant brain, obtained using simultaneous diffuse optical tomography (DOT) and video-EEG with whole-scalp coverage. Seven discrete periods of ictal electrographic activity were observed during a 60 minute recording of an infant with hypoxic–ischaemic encephalopathy. The resulting DOT images show a remarkably consistent, high-amplitude, biphasic pattern of changes in cortical blood volume and oxygenation in response to each electrographic event. While there is spatial variation across the cortex, the dominant haemodynamic response to seizure activity consists of an initial increase in cortical blood volume prior to a large and extended decrease typically lasting several minutes. This case study demonstrates the wealth of physiologically and clinically relevant information that DOT–EEG techniques can yield. The consistency and scale of the haemodynamic responses observed here also suggest that DOT–EEG has the potential to provide improved detection of neonatal seizures
The Herschel Planetary Nebula Survey (HerPlaNS) I. Data Overview and Analysis Demonstration with NGC 6781
This is the first of a series of investigations into far-IR characteristics
of 11 planetary nebulae (PNs) under the Herschel Space Observatory Open Time 1
program, Herschel Planetary Nebula Survey (HerPlaNS). Using the HerPlaNS data
set, we look into the PN energetics and variations of the physical conditions
within the target nebulae. In the present work, we provide an overview of the
survey, data acquisition and processing, and resulting data products. We
perform (1) PACS/SPIRE broadband imaging to determine the spatial distribution
of the cold dust component in the target PNs and (2) PACS/SPIRE
spectral-energy-distribution (SED) and line spectroscopy to determine the
spatial distribution of the gas component in the target PNs. For the case of
NGC 6781, the broadband maps confirm the nearly pole-on barrel structure of the
amorphous carbon-richdust shell and the surrounding halo having temperatures of
26-40 K. The PACS/SPIRE multi-position spectra show spatial variations of
far-IR lines that reflect the physical stratification of the nebula. We
demonstrate that spatially-resolved far-IR line diagnostics yield the (T_e,
n_e) profiles, from which distributions of ionized, atomic, and molecular gases
can be determined. Direct comparison of the dust and gas column mass maps
constrained by the HerPlaNS data allows to construct an empirical gas-to-dust
mass ratio map, which shows a range of ratios with the median of 195+-110. The
present analysis yields estimates of the total mass of the shell to be 0.86
M_sun, consisting of 0.54 M_sun of ionized gas, 0.12 M_sun of atomic gas, 0.2
M_sun of molecular gas, and 4 x 10^-3 M_sun of dust grains. These estimates
also suggest that the central star of about 1.5 M_sun initial mass is
terminating its PN evolution onto the white dwarf cooling track.Comment: 27 pages, 16 figures, accepted for publication in A&
Dual wavelength spread-spectrum time-resolved diffuse optical instrument for the measurement of human brain functional responses
Near-infrared spectroscopy has proven to be a valuable method to monitor tissue oxygenation and haemodynamics non-invasively and in real-time. Quantification of such parameters requires measurements of the time-of-flight of light through tissue, typically achieved using picosecond pulsed lasers, with their associated cost, complexity, and size. In this work, we present an alternative approach that employs spread-spectrum excitation to enable the development of a small, low-cost, dual-wavelength system using vertical-cavity surface-emitting lasers. Since the optimal wavelengths and drive parameters for optical spectroscopy are not served by commercially available modules as used in our previous single-wavelength demonstration platform, we detail the design of a custom instrument and demonstrate its performance in resolving haemodynamic changes in human subjects during apnoea and cognitive task experiments
Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol
open21siAbstract. Performance assessment of instruments devised for clinical applications is of key importance for validation and quality assurance. Two new protocols were developed and applied to facilitate the design and optimization of instruments for time-domain optical brain imaging within the European project nEUROPt. Here, we present the “Basic Instrumental Performance” protocol for direct measurement of relevant characteristics. Two tests are discussed in detail. First, the responsivity of the detection system is a measure of the overall efficiency to detect light emerging from tissue. For the related test, dedicated solid slab phantoms were developed and quantitatively spectrally characterized to provide sources of known radiance with nearly Lambertian angular characteristics. The responsivity of four time-domain optical brain imagers was found to be of the order of 0.1  m2 sr. The relevance of the responsivity measure is demonstrated by simulations of diffuse reflectance as a function of source-detector separation and optical properties. Second, the temporal instrument response function (IRF) is a critically important factor in determining the performance of time-domain systems. Measurements of the IRF for various instruments were combined with simulations to illustrate the impact of the width and shape of the IRF on contrast for a deep absorption change mimicking brain activation.H. Wabnitz; D. R. Taubert; M. Mazurenka; O. Steinkellner; A. Jelzow;R. Macdonald;D. Milej;P. Sawosz;M. Kacprzak;A. Liebert;R. Cooper;J. Hebden;A. Pifferi;A. Farina;I. Bargigia;D. Contini;M. Caffini;L. Zucchelli;L. Spinelli;R. Cubeddu;A. TorricelliH., Wabnitz; D. R., Taubert; M., Mazurenka; O., Steinkellner; A., Jelzow; R., Macdonald; D., Milej; P., Sawosz; M., Kacprzak; A., Liebert; R., Cooper; J., Hebden; Pifferi, ANTONIO GIOVANNI; Farina, Andrea; Bargigia, Ilaria; Contini, Davide; Caffini, Matteo; Zucchelli, LUCIA MARIA GRAZIA; Spinelli, Lorenzo; Cubeddu, Rinaldo; Torricelli, Alessandr
Hypoxia Sensitive Metal β-Ketoiminate Complexes Showing Induced Single Strand DNA Breaks and Cancer Cell Death by Apoptosis
A series of ruthenium and iridium complexes have been synthesised and characterised with 20 novel crystal structures discussed. The library of β-ketoiminate complexes has been shown to be active against MCF-7 (human breast carcino-ma), HT-29 (human colon carcinoma), A2780 (human ovarian carcinoma) and A2780cis (cisplatin resistant human ovarian carcinoma) cell lines, with selected complexes being more than three times as active as cisplatin against the A2780cis cell line. Complexes have also been shown to be highly active under hypoxic conditions, with the activities of some complexes increasing with a decrease in O2 concentration. The enzyme thioredoxin reductase is over-expressed in cancer cells and complexes reported herein have the advantage of inhibiting this enzyme, with IC50 values measured in the nanomolar range. The anti-cancer activity of these complexes was further investigated to determine whether activity is due to effects on cellular growth or cell survival. The complexes were found to induce significant cancer cell death by apoptosis with levels induced correlating closely with activity in chemosensitivity studies. As a possible cause of cell death, the ability of the complexes to induce damage to cellular DNA was also assessed. The complexes failed to induce double strand DNA break or DNA crosslinking but induced significant levels of single DNA strand breaks indi-cating a different mechanism of action to cisplatin
- …