41 research outputs found

    N400-like potentials and reaction times index semantic relations between highly repeated individual words

    Get PDF
    The N400 ERP is an electrophysiological index of semantic processing. Its amplitude varies with the semantic category of words, their concreteness, or whether their meaning matches that of a preceding context. The results of a number of studies suggest that these effects could be markedly reduced or suppressed for stimuli that are repeated. Nevertheless, we have recently shown that significant effects of semantic matching and category could be obtained on N400-like potentials elicited by massively repeated target words in a prime–target semantic categorization task. If such effects could be obtained when primes also are repeated, it would then be possible to study the semantic associations between individual words. The present study thus aimed to test this hypothesis while (1) controlling for a potential contribution of physical matching to the processing of repeated targets and (2) testing if the N400-like effects obtained in these conditions are modulated by task instruction, as are classic N400 effects. Two category words were used as primes and two exemplars as targets. In one block of trials, subjects had to respond according to the semantic relation between prime and target (semantic instruction) and, in another block, they had to report changes in letter case (physical instruction). Results showed that the amplitude of the N400-like ERP obtained was modulated by semantic matching and category but not by letter case. The effect of semantic matching was observed only in the semantic instruction block. Interestingly, the effect of category was not modulated by task instruction. An independent component analysis showed that the component that made the greatest contribution to the effect of semantic matching in the time window of the N400-like potential had a scalp distribution similar to that reported for the N400 and was best fit as a bilateral generator in the superior temporal gyrus. The use of repetition could thus allow, at least in explicit semantic tasks, a drastic simplification of N400 protocols. Highly repeated individual words could be used to study semantic relations between individual concepts

    A central component of the N1 event-related brain potential could index the early and automatic inhibition of the actions systematically activated by objects

    Get PDF
    Stimuli of the environment, like objects, systematically activate the actions they are associated to. These activations occur extremely fast. Nevertheless, behavioural data reveal that, in most cases, these activations are then automatically inhibited, around 100 ms after the occurrence of the stimulus. We thus tested whether this early inhibition could be indexed by a central component of the N1 event-related brain potential (ERP). To achieve that goal, we looked at whether this ERP component is greater in tasks that could increase the inhibition and in trials where reaction times happen to be long. The illumination of a real space bar of a keyboard out of the dark was used as a stimulus. To maximize the modulation of the inhibition, the task participants had to perform was manipulated across blocks. A look-only task and a count task were used to increase inhibition and an immediate press task was used to decrease it. ERPs of the two block-conditions where presses had to be prevented and where the largest central N1s were predicted were compared to those elicited in the press task, differentiating the ERPs to the third of the trials where presses were the slowest from the ERPs to the third of the trials with the fastest presses. Despite larger negativities due to motor potentials and despite greater attention likely in immediate press-trials, central N1s were found to be minimal for the fastest presses, intermediate for the slowest ones and maximal for the two no-press conditions. These results thus provide a strong support for the idea that the central N1 indexes an early and short lasting automatic inhibition of the actions systematically activated by objects. They also confirm that the strength of this automatic inhibition spontaneously fluctuates across trials and tasks. On the other hand, just before N1s, parietal P1s were found greater for fastest presses. They might thus index the initial activation of these actions. Finally, consistent with the idea that N300s index late inhibition processes, that occur preferentially when the task requires them, these ERPs were quasi absent for fast presses trials and much larger in the three other conditions
    corecore