688 research outputs found

    Linguistic methodology for the analysis of aviation accidents

    Get PDF
    A linguistic method for the analysis of small group discourse, was developed and the use of this method on transcripts of commercial air transpot accidents is demonstrated. The method identifies the discourse types that occur and determine their linguistic structure; it identifies significant linguistic variables based upon these structures or other linguistic concepts such as speech act and topic; it tests hypotheses that support significance and reliability of these variables; and it indicates the implications of the validated hypotheses. These implications fall into three categories: (1) to train crews to use more nearly optimal communication patterns; (2) to use linguistic variables as indices for aspects of crew performance such as attention; and (3) to provide guidelines for the design of aviation procedures and equipment, especially those that involve speech

    Distilling Privacy Requirements for Mobile Applications

    Get PDF
    As mobile computing applications have become commonplace, it is increasingly important for them to address end-users’ privacy requirements. Privacy requirements depend on a number of contextual socio-cultural factors to which mobility adds another level of contextual variation. However, traditional requirements elicitation methods do not sufficiently account for contextual factors and therefore cannot be used effectively to represent and analyse the privacy requirements of mobile end users. On the other hand, methods that do investigate contextual factors tend to produce data that does not lend itself to the process of requirements extraction. To address this problem we have developed a Privacy Requirements Distillation approach that employs a problem analysis framework to extract and refine privacy requirements for mobile applications from raw data gathered through empirical studies involving end users. Our approach introduces privacy facets that capture patterns of privacy concerns which are matched against the raw data. We demonstrate and evaluate our approach using qualitative data from an empirical study of a mobile social networking application

    Computational understanding and manipulation of symmetries

    Get PDF
    Attila Egri-Nagy, Chrystopher L Nehaniv, "Computational Understanding and Manipulation of Symmetries", in Chalup S. K., Blair A. D., Randall M. (Eds) Artificial Life and Computational Intelligence ACALCI, First Australasian Conference, Newcastle, NSW, Australia, February 5-7 2015, Proceedings, Lecture Notes in Computer Science, Vol. 8955, 2015 © Springer International Publishing Switzerland 2015 Final, published version of this paper is available online via doi: 10.1007/978-3-319-14803-8_2For natural and artificial systems with some symmetry structure, computational understanding and manipulation can be achieved without learning by exploiting the algebraic structure. This algebraic coordinatization is based on a hierarchical (de)composition method. Here we describe this method and apply it to permutation puzzles. Coordinatization yields a structural understanding, not just solutions for the puzzles. In the case of the Rubik’s Cubes, different solving strategies correspond to different decompositions

    Completeness and decidability results for hybrid(ised) logics

    Get PDF
    Adding to the modal description of transition structures the ability to refer to specific states, hybrid(ised) logics provide an interesting framework for the specification of reconfigurable systems. The qualifier ‘hybrid(ised)’ refers to a generic method of developing, on top of whatever specification logic is used to model software configurations, the elements of an hybrid language, including nominals and modalities. In such a context, this paper shows how a calculus for a hybrid(ised) logic can be generated from a calculus of the base logic and that, moreover, it preserves soundness and completeness. A second contribution establishes that hybridising a decidable logic also gives rise to a decidable hybrid(ised) one. These results pave the way to the development of dedicated proof tools for such logics used in the design of reconfigurable systems

    Implicit and explicit stigma towards mental health treatment

    Get PDF
    In order to better understand stigma associated with mental health treatment, 118 Clemson University students completed Implicit Association Tasks (IAT) and self-report surveys. The IAT presented terms associated with either medical or psychological treatments or patients, paired with additional positive or negative terms (e.g., good vs. bad). Survey items assessed attitudes towards mental health and medical treatment, as well as mental health and medical patients. Responses from the IAT and survey were compared regarding mental health versus medical treatments and mental health versus medical patients. The IAT results revealed a significant negative implicit bias toward mental health treatment and mental health patients. Explicit survey measures also showed more negative responses toward mental health treatment and patients. Our findings provide both implicit and explicit evidence of stigma associated with mental health treatment and patients. Through better understanding these biases, researchers can work to reduce the stigma associated with mental health treatment

    Variant-Based Decidable Satisfiability in Initial Algebras with Predicates

    Get PDF
    [EN] Decision procedures can be either theory-specific, e.g., Presburger arithmetic, or theory-generic, applying to an infinite number of user-definable theories. Variant satisfiability is a theory-generic procedure for quantifier-free satisfiability in the initial algebra of an order-sorted equational theory (¿,E¿B) under two conditions: (i) E¿B has the finite variant property and B has a finitary unification algorithm; and (ii) (¿,E¿B) protects a constructor subtheory (¿,E¿¿B¿) that is OS-compact. These conditions apply to many user-definable theories, but have a main limitation: they apply well to data structures, but often do not hold for user-definable predicates on such data structures. We present a theory-generic satisfiability decision procedure, and a prototype implementation, extending variant-based satisfiability to initial algebras with user-definable predicates under fairly general conditions.Partially supported by NSF Grant CNS 14-09416, NRL under contract number N00173-17-1-G002, the EU (FEDER), Spanish MINECO project TIN2015-69175- C4-1-R and GV project PROMETEOII/2015/013. Ra´ul Guti´errez was also supported by INCIBE program “Ayudas para la excelencia de los equipos de investigaci´on avanzada en ciberseguridad”.Gutiérrez Gil, R.; Meseguer, J. (2018). Variant-Based Decidable Satisfiability in Initial Algebras with Predicates. Lecture Notes in Computer Science. 10855:306-322. https://doi.org/10.1007/978-3-319-94460-9_18S30632210855Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. TOCL 10(1), 4 (2009)Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. I&C 183(2), 140–164 (2003)Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiability in the theory of inductive data types. JSAT 3, 21–46 (2007)Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_23Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures with Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74113-8Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite variant property. Technical report, CS Dept. University of Illinois at Urbana-Champaign (2014). http://hdl.handle.net/2142/47117Ciobaca., S.: Verification of composition of security protocols with applications to electronic voting. Ph.D. thesis, ENS Cachan (2011)Comon, H.: Complete axiomatizations of some quotient term algebras. TCS 118(2), 167–191 (1993)Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_22Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer Science, North-Holland, vol. B, pp. 243–320 (1990)Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for lists, multisets, compact lists, and sets. TOCL 9(3), 15 (2008)Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding decision procedures to SMT solvers using axioms with triggers. JAR 56(4), 387–457 (2016)Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. JALP 81, 898–928 (2012)Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014969Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. TCS 105, 217–273 (1992)Gutiérrez, R., Meseguer, J.: Variant satisfiability in initial algebras with predicates. Technical report, CS Department, University of Illinois at Urbana-Champaign (2018). http://hdl.handle.net/2142/99039Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SICOMP 15, 1155–1194 (1986)Kroening, D., Strichman, O.: Decision Procedures - An algorithmic point of view. Texts in TCS. An EATCS Series. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74105-3Lynch, C., Morawska, B.: Automatic decidability. In: Proceedings of LICS 2002, p. 7. IEEE Computer Society (2002)Lynch, C., Tran, D.-K.: Automatic decidability and combinability revisited. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 328–344. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_22Meseguer, J.: Variant-based satisfiability in initial algebras. SCP 154, 3–41 (2018)Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. TCS 672, 1–35 (2017)Meseguer, J., Goguen, J.: Initiality, induction and computability. In: Algebraic Methods in Semantics, Cambridge, pp. 459–541 (1985)Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, multiple representation and coercion problems. I&C 103(1), 114–158 (1993)Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. TOPLAS 1(2), 245–257 (1979)Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. In: Lucanu, D. (ed.) WRLA 2016. LNCS, vol. 9942, pp. 167–184. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44802-2_10Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an extensional theory of arrays. In: Proceedings of LICS 2001, pp. 29–37. IEEE (2001)Tushkanova, E., Giorgetti, A., Ringeissen, C., Kouchnarenko, O.: A rule-based system for automatic decidability and combinability. SCP 99, 3–23 (2015

    A Foundational View on Integration Problems

    Full text link
    The integration of reasoning and computation services across system and language boundaries is a challenging problem of computer science. In this paper, we use integration for the scenario where we have two systems that we integrate by moving problems and solutions between them. While this scenario is often approached from an engineering perspective, we take a foundational view. Based on the generic declarative language MMT, we develop a theoretical framework for system integration using theories and partial theory morphisms. Because MMT permits representations of the meta-logical foundations themselves, this includes integration across logics. We discuss safe and unsafe integration schemes and devise a general form of safe integration
    corecore