
Computational Understanding and Manipulation
of Symmetries

Attila Egri-Nagy1,2 and Chrystopher L. Nehaniv1

1 Centre for Computer Science and Informatics Research
University of Hertfordshire

Hatfield, Herts AL10 9AB, United Kingdom
C.L.Nehaniv@herts.ac.uk

2 Centre for Research in Mathematics
School of Computing, Engineering and Mathematics,
University of Western Sydney (Parramatta Campus)

Locked Bag 1797, Penrith, NSW 2751
A.Egri-Nagy@uws.edu.au

Abstract. For natural and artificial systems with some symmetry struc-
ture, computational understanding and manipulation can be achieved
without learning by exploiting the algebraic structure. This algebraic co-
ordinatization is based on a hierarchical (de)composition method. Here
we describe this method and apply it to permutation puzzles. Coordi-
natization yields a structural understanding, not just solutions for the
puzzles. In the case of the Rubik’s Cubes, different solving strategies
correspond to different decompositions.

Keywords: permutation puzzle · wreath product · coordinatization · cascade ·
decomposition · Rubik’s Cube

1 Introduction

Symmetry structure in natural and artificial systems, such as crystallography,
chemistry, physics, and permutation puzzles, etc., can facilitate understanding
and manipulation of these systems. This is well-known in the mathematical
sciences and from the algebraic theory of groups. However, until now, computa-
tional algebraic methods have not been fully exploited in Artificial Intelligence
(AI).

We show how AI systems can make use of such mathematical symmetry
structure to automatically generate and manipulate hierarchical coordinate sys-
tems for finite systems whose generating symmetries are given. Such hierarchical
coordinate systems correspond to subgroup chains in the group structure deter-
mined by generating symmetries of the system. We demonstrate how, for any
finite-state symmetry system, these coordinate systems

1. can be generated automatically, i.e. deriving formal models for understanding
the finite-state symmetry system, and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/29850267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
C.L.Nehaniv@herts.ac.uk
A.Egri-Nagy@uws.edu.au

2. can be deployed in manipulating the system automatically.

Thus, without learning, manipulation of such systems is reduced via algebra to
sequential computation in a hierarchy of simple (or simpler) group coordinates.
This general, implemented method is illustrated with examples from coordinate
systems on permutation puzzles such as Rubik’s cube.

1.1 Algebra, Cognitive Modeling, Coordinate Systems

Algebra and the theory of permutation groups is well-known from applications of
groups in chemistry and crystallography [24], in physics [15], and more recently
of semigroups and groups in systems biology, genetic regulatory networks, and
biochemistry [4, 26]. Unlike machine learning or optimization techniques, alge-
braic machine intelligence can without any learning derive coordinate systems
not only on states of a structure, but also on its transformations, i.e. on op-
erations for manipulating the structure. These are unlike the methods, spatial
structures, or cognitive and semantic maps presently exploited for theorem prov-
ing, path-planning, automated reasoning, etc., but they are similar to coordinate
systems occurring tacitly elsewhere in science [26]. Coordinate systems, like the
ones studied here on general symmetry structures from the viewpoint of AI ap-
plications using computer algebra, also arise in conservation laws in physics. As
Emmy Noether showed in the first part of the 20th century, invariants preserved
under conservation laws correspond exactly to group-theoretic symmetry struc-
tures in physics [23]; moreover, such invariants for physical systems give rise to
coordinate systems of exactly the type described here [21,26].

AI techniques for cognitive modeling, machine learning and optimization so
far have made relatively little use of abstract algebra. Cognitive architectures
such as SOAR, ACT-R and SAC have been applied to build AI systems that
model human cognitive capacities more or less intending to emulate faithfully the
structure of cognition in humans, with applications ranging from autonomous
control of aircraft based on subsymbolic rule-extraction, to human-style learn-
ing of arithmetic or natural language, to predictive evaluation of user interfaces
(e.g. [18, 19, 25]). But aspects of human and machine cognition can also involve
understanding of hierarchical processes with dynamical structure as evidenced
by the object-oriented methods [20] or the place-value representation in human
number systems [29], which have close connections to algebra. Here we are inter-
ested in the study of AI models that can derive, represent, and manipulate this
type of knowledge, but without necessarily seeking to model human capacities
faithfully. Models for understanding of finite-state (and more general) dynamical
systems phenomena in general exhibit such feedforward, coarse-to-fine, hierar-
chical structure related to algebraic coordinate systems [17, 20, 26]. Our work
shows how such coordinate systems can be derived and exploited automatically.

By a coordinate system on a symmetry structure (or more general structure),
we mean a notational system in the broadest possible sense, with which a human
or artificial agent can address building blocks of the structure and their relations
in a decomposition, thus gaining a convenient way for grasping the structure of

the original phenomenon and possibly getting tools for manipulating the com-
ponents.

An obvious example is the Descartes coordinate system, where we can uniquely
specify any point of the n-dimensional space by n coordinates. However, this is
an example of a spatial and inherently non-hierarchical coordinate system for a
totally homogeneous space. In general, different coordinates have different roles,
addressing ‘parts’ of the system different in size, function, etc. The natural exam-
ple of a hierarchical coordinate system is our decimal positional number notation
system: different coordinates correspond to different magnitudes. The examples
also show that a coordinate system is very much the same thing as a decompo-
sition: the space is decomposed into dimensions, an integer is decomposed into
ones, tens, hundreds, etc.

From this viewpoint coordinate systems become cognitive models, means of
knowledge representation. The above examples show the usefulness of these co-
ordinates, but how can we obtain these models? The good news, and the main
promise of this research direction, is that we can get them automatically! In
algebraic automata theory, the Prime Decomposition Theorem says that every
finite state automata can be decomposed into a hierarchical coordinate sys-
tem [8, 14, 17]. Therefore the way of representing knowledge becomes algebraic,
semigroup- and group-theoretical, which is really very different from other, well-
established AI methods mainly based on logic (e.g. [1, 22]).

Here we concentrate on coordinatizing symmetry structures (called ‘per-
mutation groups’ in algebra) via the Frobenius-Lagrange embedding. Related
work [4, 6, 7] has computationally implemented the automated generation of
transformation semigroup decompositions along the lines of the Krohn-Rhodes
theorem, but did not pursue the ‘simpler’ problem of obtaining coordinate sys-
tems on permutation groups as we do here, and hence our work is both comple-
mentary and necessary for providing a full decomposition in the more general
setting where operations need not be invertible.

The use of algebra in cognitive modeling also occurs in other non-traditional
applications. For example, the approach by Fauconnier-Turner-Goguen to con-
ceptual blending and metaphor [9] uses category-theoretic pushout computations
with computer algebraic implementations by Goguen to automatically generate
conceptual blends and metaphors relating two (or more) conceptual domains
(knowledge of which is modeled by small categories), as well as applications to
the semiotics of user-interface design, and formal specification for imperative
programs built up and verified in a hierarchical manner [11,12].

As there are many different ways of understanding of the same thing, there
are many different coordinate systems for the same structure. Some of them
may be intuitive for humans, while others will suit computational manipulation
better, so the range of intelligent ‘users’ of the coordinate system is not restricted.

Although much of the mathematical theory required here is very old, the
proper computational tools were missing, therefore the idea of hierarchical coor-
dinate systems giving understanding computationally has not been much studied
nor applied. Now such tools are available open-source [5–7] for transformation

semigroups, complemented by our work reported here for groups giving fine detail
on coordinatizing the groups involved. The mathematical significance of these
coordinate systems is immediate, but as they capture one of the basic aspects of
our cognitive capabilities, namely, hierarchical representation, they might also
play significant role in AI.

2 Mathematical Preliminaries

Here we briefly review basic group theory and a hierarchical composition method
of permutation groups.

2.1 Essentials of Group Theory

A function p : X → X on the set X is called a permutation if it is one-to-one
and onto (invertible). A permutation group (X,G) is a set G of permutations
closed under composition (multiplication, usually denoted by ·), together with
the state set X on which the mappings act. It is called a symmetry group if
certain structure on X is preserved by all p ∈ G. If it is clear form the context
we omit the state set and write simply G. For x ∈ X and g ∈ G, we write x · g
for the result of applying permutation g to x. The action is faithful if whenever
x · g = x · g′ holds for all x ∈ X then g = g′. The group contains the identity 1
and inverse map p−1 for each element p, thus everything can undone within a
group. A group G acting on X by permutations need not necessarily be faithful,
i.e. need not be a permutation group. The group consisting of all permutations
acting on n points is called the symmetric group Sn, while Cn denotes the cyclic
group on n objects permuted cyclically. A subset H of a group G called a subgroup
if it is closed under inversion and the group’s multiplication. We write H ≤ G if
H is a subgroup of G. If (X,G) is faithful, then G is a naturally a subgroup of
the symmetric group on X. We say (X,G) is transitive there is an x0 ∈ X from
which every x ∈ X is reachable, i.e., there exists g ∈ G with x0 · g = x. For more
on elementary group theory see for instance [13,27], and on permutation groups
see [2, 3]. As is standard, we use cycle notation to denote permutation group
elements, e.g. (1 3)(2 4 5) denotes the permutation swapping 1 and 3, cyclically
taking 2 to 4, 4 to 5, and 5 to 2, while leaving any other objects fixed.

As a special case, a group can act on itself, i.e. the group elements are the
states and each g0 ∈ G maps G → G by right multiplication, g 7→ g · g0.
This is called the right regular representation, and it enables us to identify the
group element with its effect, which will be really handy for permutation puzzles.
However, this representation poses problems computationally due to the possibly
large size of the state set.

2.2 Cascade Product of Permutation Groups

Given permutation groups (X,G) and (Y,H), their wreath product is the per-
mutation group

(X,G) o (Y,H) ∼= (X × Y,GoD)

where D = HX is the set of all possible functions from X to H. A state in the
wreath product is expressed by two coordinates (x, y), x ∈ X, y ∈ Y . The group
elements are coordinatized similarly by (g, d) where g ∈ G and d : X → H is the
dependency function, a ‘recipe’ to find an element that should be applied on the
second level based on the (previous) state of the first (top) level. The elements
of the wreath product are all permutations of X × Y given by some such (g, d):

(x, y) · (g, d) = (x · g, y · d(x))

from which we can see that on the top level the action is independent from the
bottom level, but not the other way around, hence the hierarchical nature of the
wreath product. The wreath product is easy to generalize for more levels.

Wreath products are prone to combinatorial explosion, so in practice we deal
with substructures with the dependency functions limited. These we call cascade
products (see Fig. 1 for a simple example).

0

c(0)

1 top

c(1)

0 1 bottom

+1
1C2

+1

1C2

1C2 1C2
+1

+1

Fig. 1. Cascade with Carry. A modulo 4 counter (cyclic group C4 acting on 4 objects)
is built as a cascade product of two modulo 2 counters (C2 on 2 objects). Their wreath
product would yield the symmetry group of the square, but limiting dependencies
as much as possible to allow just the carry bit (here function c) yields precisely the
counter. The cascade product is generated by (+1, c) and isomorphic to C4 for which it
is a hierarchical coordinatization. The carry c is a dependency function of the current
top level state x ∈ {0, 1}, so the carry bit c(x) is either ‘1’ (given by the generator +1
of the group C2) or ‘0’ (given by the identity 1C2 of the group C2) and gives what to
add to the bottom state y ∈ {0, 1}.

More generally, a modulo 2k counter is coordinatized and isomorphic to a cascade
of k C2’s, generated by (+1, c1, . . . , ck−1) where for 1 ≤ i ≤ k−1 the dependency

function ci(x1, . . . , xi) is ‘1’ only for (x1, . . . , xi) the all 1’s vector and is ‘0’
otherwise. This is the binary (base 2) representation of integers. Base n is similar.

3 Lagrange Coordinatizations of Groups

In fact, we can build a isomorphic cascade for any permutation group (X,G).
The basic idea of the Lagrange Decomposition is that given a subgroup H of G,
we form the set of cosets G/H = {Hg : g ∈ G}, i.e. the subgroup H and its
translates within G; these partition G, and G acts on G/H by right translations:

Hg
·g07→ Hgg0. The action may not be faithful, so we denote G made faithful by

G̃.3 We do not need to act on whole cosets but can replace them by arbitrary
but fixed coset representatives g ∈ Hg = Hg. So the action is g·g0 = gg0 = gg0.

Theorem 1 (Lagrange Decomposition). Let (X,G) be a transitive permu-
tation group and (X,H) be a subgroup of it. Then (X,G) admits the following
coordinatization

(G/H, G̃) o (H,H)

corresponding to the subgroup chain G ≥ H ≥ 〈1〉.

Thus given a state x ∈ X we will coordinatize it by x̃ = (x1, x2), where each xi

is a coset representative (x1 ∈ G/H, x2 ∈ H/〈1〉).
By refining the underlying subgroup chain we can make the component

groups much simpler or simple (i.e. having only trivial homomorphic images).
This allows one to iterate the Lagrange coordinatization so the problem of un-
derstanding the permutation group (X,G) is reduced to understanding much
simpler permutation groups linked up in a feedforward manner. Therefore get-
ting a coordinatization corresponds to devising a subgroup chain.

For building subgroup chains certain subgroups are very useful. The stabilizer
Ga is the subgroup of G, which fixes a ∈ X. Point-wise and set-wise stabilizers
can be defined for sets of states as well. By iterating and refining the Lagrange
construction, we have

Theorem 2 (Frobenius-Lagrange Coordinatization). Let (X,G) be a tran-
sitive permutation group and let G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = Ga be a subgroup
chain ending at the stabilizer Ga of some state a ∈ X. Then, in the notation
above, (X,G) is coordinatized by embedding in the wreath product

(G1/G2, G̃1) o · · · o (Gn/Gn+1, G̃n)

where G̃i is Gi modulo the core of Gi+1 in Gi. Moreover, since (X,G) corre-
sponds isomorphically to (G/Ga, G), the states have coordinates given by the
bijection

Gaxn · · ·x1 ⇔ (x1, . . . , xn)

where each xi is the fixed coset representative of Gi+1xi in Gi.

3 Here G̃ is a quotient group G/K, where K is the core of H in G, that is, the
largest normal subgroup of G contained in H. Thus K =

⋂
g∈G g−1Hg. See standard

references [2, 27].

Remarks. (1) The number of coordinate tuples in Theorem 2 is exactly |X|.
Each state has a unique coordinatization. (2) In Theorem 1 the number of possi-
ble coordinate tuples is |G| = |X| · |Ga|, for any a ∈ X, as each point has exactly
|Ga| different possible coordinatizations.

4 Coordinate Manipulation

The Frobenius-Lagrange decomposition gives us, in terms of a coordinate system,
a structured view of the group, i.e. we can address its parts conveniently and
with arbitrary precision. However, we would like to use the coordinate system
dynamically, not just as a static description. We would like to calculate with
it, finding manipulative operations taking one state to another desired state,
or, equivalently, from one tuple of coordinate values to another one using the
elementary symmetry operations of the original structure.

4.1 Component Actions

For establishing the connection between the original group and the coordinatized
one we need to have a way to express a permutation as coordinate actions.
Given a group element g ∈ G and a coordinatized state x̃ = (x1, . . . , xn), we
can calculate the coordinatewise component actions by the following recursive
calculations:

g1 := g

gi+1 := xi · gi ·
(
xi · gi

)−1 ∈ Gi+1

Thus g on x̃ is coordinatized as g̃(x̃) = (g1, . . . , gn). Note that generally xi · gi
does not equal to xi · gi, so gi is not the identity. Note the hierarchical structure:
gi depends only on g and (x1, . . . , xi−1). The action of g in coordinatized form
is then

(x1, . . . , xn) · g̃ = (x1 · g1, . . . , xn · gn).

Killing and Building by Levels We call the coordinate tuple the base state,
if it consists of only the identities (as coset representatives), which clearly repre-
sents the identity of the original group. Given an arbitrary coordinatized state
x̃ = (x1, . . . , xn), we call the coordinatewise changes of values from xi to 1 (top-
down) ‘killing by levels’. This is accomplished by simply applying the inverse of
the coset representatives, in order. An example is shown in Fig. 6. Conversely,
‘building by levels’ is accomplished bottom-up by successively applying the coset
representatives, i.e. elementary generating symmetries whose product is the given
coset representative xi for the ith component, in the order xn then xn−1 ,..., and
finally x1 to move from the ‘solved state’ (1, . . . , 1) to create state x̃ bottom-up.
Moreover, one can compute elements that change only a single coordinate to a
desired value.

gap> pocket_cube_F := (9,10,11,12)(4,13,22,7)(3,16,21,6);;

gap> pocket_cube_R := (13,14,15,16)(2,20,22,10)(3,17,23,11);;

gap> pocket_cube_U := (1,2,3,4)(5,17,13,9)(6,18,14,10);;

gap> pocket_cube_L := (5,6,7,8)(1,9,21,19)(4,12,24,18);;

gap> pocket_cube_D := (21,22,23,24)(12,16,20,8)(11,15,19,7);;

gap> pocket_cube_B := (17,18,19,20)(1,8,23,14)(2,5,24,15);;

gap> pocket_cube_gens := [pocket_cube_U, pocket_cube_L, pocket_cube_F,

> pocket_cube_R, pocket_cube_B, pocket_cube_D];;

gap> pocket_cube_gen_names := ["U","L","F","R","B","D"];;

gap> pocket_cube := GroupByGenerators(pocket_cube_gens);

<permutation group with 6 generators>

gap> scrambled := Random(pocket_cube);

(1,19,20,3,18,24,15,10,5,8,23,13)(2,6,7,17,4,12,14,9,21)

gap> inverse := Inverse(scrambled);

(1,13,23,8,5,10,15,24,18,3,20,19)(2,21,9,14,12,4,17,7,6)

gap> epi := EpimorphismFromFreeGroup(pocket_cube:names:=

["U","L","F","R","B","D"]);

gap> sequence := PreImagesRepresentative(epi,inverse);

U^-1*R*U^-1*F*L*D^-1*F*L^-1*U*F^-1*U^-1*F*U*L^-1*F^-1*L*F*L*

U^-1*F^-1*U^-1*L*F*L^-1*F^-1*U^-1*F*U*R^-1*U*F^-2*U^-2*L

gap> Length(sequence);

35

Fig. 2. Getting a solution for the Pocket Cube. This is an excerpt from a Gap in-
teractive session. The basic possible moves as generators (basic symmetry operations
F , R, U , L, D, B rotating a face 90◦) for the Pocket Cube are defined together with
names. Group elements are represented here in cycle notation, with () denoting the
identity element (or, according to the right regular representation, the solved state).
For obtaining a solution we simply express the inverse of permutation representing the
scrambled state as a sequence of generators.

Global Transformation via Coordinate Values Since we work with groups,
whenever we make any action, it can be undone by an inverse, thus reversing
the killing by levels we can go from the base state to any other coordinate value
combination. Thus going from x̃ to ỹ coordinatewise can be achieved simply
combining the level-killers of x̃ with the level-builders of ỹ. More efficient solu-
tions are generally possible (and implemented), but this provides at least one
way to do it using the hierarchical coordinate system.

5 An Application: Permutation Puzzles

Permutation puzzles are one person games where the moves are permutations,
elements of a group [16]. Natural problems for such puzzles are:

1. How can one go, via elementary legal moves, from one configuration x of the
puzzle to a standard “solved” configuration?

2. More generally, how can one go from configuration x to another arbitrarily
selected configuration y?

The main quest of permutation puzzles is often to find a shortest sequence of
moves that leads to the solution (bounded by the diameter of the Cayley graph
of the underlying group). Though the idea of of nested coset space actions is also
used in tackling the shortest solution problem (e.g. Thistlethwaite’s Algorithm),
it is not our aim here. We would like to facilitate understanding, but usually the
quickest solutions are ‘dirty tricks’ that are very difficult to grasp and one often
has to fall back on simple memorizing. In fact, non-optimal solutions are easy to
get by using computer algebra systems (see Fig. 2 for solving a simpler version
of the cube). One can follow the steps to solve the cube without gaining any
understanding. Can we learn to solve the cube from the above answer? Can we
identify, talk about and solve subproblems? Can we devise and compare different
solving strategies? We aim to answer these questions.

5.1 Coordinatizing Rubik’s Cubes

The 3× 3× 3 Rubik’s Cube is probably the most popular permutation puzzle.
What does it mean ‘to know the Rubik’s cube’? The question usually boils

down to the ability to solve the cube. By asking a cube-fan he/she would give
a few tricks, recipes to apply in certain situations. By learning these algorithms
one can learn to solve the cube, but does it imply understanding the cube, i.e.
grasping how certain sequences of moves work and seeing why they work? Not
necessarily.

We claim that understanding comes with imposing a coordinate system on
the underlying algebraic structure. Here we demonstrate this on the symmetry
group of the Pocket Cube, which is the 2 × 2 × 2 version of the Rubik’s Cube.
The moves are the 90 degree clockwise rotations of the 6 sides. By the Frobenius-
Lagrange decomposition we know that each coordinate system corresponds to
a subgroup chain, so devising new strategies for solving the cube is equivalent
to constructing subgroup chains. Such a coordinate system encodes a ‘global
viewpoint’ in which one solves by successive approximation, with manipulations
going from coarse to fine resolution, and converging in terms of moving from
natural, abstract states to fully specified states. The group of the cube acts on
the set of configurations in such a way that any non-trivial permutation yields a
different result on the ‘solved state’, thus the stabilizer of this state is the trivial
group 〈1〉, so each group element corresponds to a unique configuration. Hence
by the remark following Theorem 2, for any coordinate system arising from
any subgroup chain down to 〈1〉, each configuration of the cube has a unique
coordinatized form. Examples derived computationally follow (see also Fig. 6).

Pocket Cube: Cornerwise Decomposition One can solve the cube in a
rather long, systematic step-by-step fashion: get the position and then the ori-
entation of the first corner right, then proceed to the next corner until the cube
is solved. In the subgroup chain we put the stabilizer of the position of a corner,

then continue with the stabilizer of the orientation of the corner within the posi-
tion stabilizing subgroup. Then we repeat the whole process for another corner.
The chain yields the following coordinatization:

S8 o C3 o S7 o C3 o S6 o C3 o S5 o C3 o S4 o C3 o S3 o C3 o C2 o C3

where the top level component S8 acts on 8 states (coordinate values), repre-
senting the 8 possible positions of the first stabilized corner. Therefore killing
the first level will put the corner in the right position. The coordinate values on
the second level correspond the 3 possible rotational states of the corner. The
3rd and 4th level similarly encode the second corner, and so on (Figures 3-5).

71 202

1334125

106

247

28

139 1810

16111912

513

1514

415

2216

23172118

1419 920821 1122

6231724

Fig. 3. A random, ‘scrambled’ configuration of the Pocket Cube, coordinatized by the
cornerwise decomposition as (8, 2, 5, 3, 2, 2, 5, 1, 2, 3, 3, 3, 1, 2). Note: coset representa-
tives have been integer-encoded in these examples. Faces are identified by numbers
giving their position in the solved configuration. Subscripts if present shows what face
should be at the location in the solved state.

Another Model for Understanding: Permute the Corners, then ‘Beat
the Clock’ Contrasting to the previous, very machine-minded solution, here is
another one which is short, and reveals the existence of a different puzzle within
the Pocket Cube:

S8 o
7∏

i=1

C3.

The top level component is the right regular representation of the now familiar
symmetric group permuting the 8 corners. The second level is the direct product
of 7 copies of modulo 3 counters (the orientation group of corners). It is to
be noted that there are not 8 copies, otherwise every corner could be rotated
independently from the other corners (and that would be rather easy to solve).
Actually solving the bottom level is the same type of problem as the Rubik’s

1 2

345
6

127

118

9 10

8112112

13
14

2315

2416

1718

2219 1520721 1922

20231624

Fig. 4. Pocket Cube configuration after killing the top 9 levels out of 14.
(1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 2)

1 2

345
6

7
8

9 10

1112

13
14

15
16

1718

19 2021 22

2324

Fig. 5. The solved state of the Pocket Cube with coordinates
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

gap> #creating a subgroup chain from the chief series

gap> subgroupchain := ShallowCopy(ChiefSeries(pocket_cube));;

gap> Remove(subgroupchain,2);;

gap> #getting the hierarchical components

gap> cags := CosetActionGroups(subgroupchain);;

gap> StructureDescription(cags.components[1]);

"S8"

gap> StructureDescription(cags.components[2]);

"C3 x C3 x C3 x C3 x C3 x C3 x C3"

gap> #solving the cube from a random state

gap> scrambled := Random(pocket_cube);

(1,10,12,6,23,14,16,24)(2,22,19,5,3,21,4,15)(7,9,20,17,11,8,18,13)

gap> coordinates := Perm2Coords(scrambled, cags.transversals);

[22578, 552]

gap> levelkillers := LevelKillers(coordinates,cags.transversals);

[(1,19,22,2,15,9,7,3)(4,21,10,18,24,16,14,23)(5,8,11,17,20,6,12,13),

(1,5,18)(3,13,10)(4,6,9)(8,19,24)]

gap> halfsolved := scrambled * levelkillers[1];

(1,18,5)(3,10,13)(4,9,6)(8,24,19)

gap> halfsolvedcoords := Perm2Coords(halfsolved,cags.transversals);

[1, 552]

gap> halfsolved * levelkillers[2] = ();

true

Fig. 6. Deriving a Coordinate System for Pocket Cube and Solving via
Killing by Levels. The subgroup chain for the decomposition is the modified chief
series of the group. Then the decomposition is calculated yielding the two level coordi-
natization. Then a scrambled (random element of the Pocket Cube permutation group)
is shown in coordinate format. Finally, the scrambled cube is solved by levels of this
hierarchical coordinate system, top-down, using level-killers (see text), which are also
expressed as an [unoptimized] sequence of the original generators.

Clock [28], which is an array of connected modulo 12 counters. As the underlying
group is commutative, it is easier to solve since the order of operations generating
this subpuzzle does not matter in this lowest level. For an example computational
session using our decomposition package SgpDec [5, 7] in Gap [10] see Fig. 6.

3 × 3 × 3 Rubik’s Cube Going to the standard Cube we immediately meet
some difficulty, as its group is not a transitive one. Therefore, using (G,G) we
can get a decomposition which solves the corners as in the Pocket Cube and
nearly separately and in parallel the remaining non-corner middle faces (those
not at the corners, not in the middle of a side) on which the cube group is
transitive. Then we can proceed by coordinatizing and solving the Pocket Cube
and this middle cube puzzles independently.

Choosing a suitable algorithm For a given configuration of a permutation
puzzle there can be several choices of applicable strategies. The algebraic coor-
dinate systems can help in making this selection. Assuming a predefined number
of algorithmic stages, a suitable solving strategy is a decomposition that maxi-
mizes the number of solved levels. This is essentially what human speedsolvers
are doing. Similarly, one can build a robot for solving the Rubik’s Cube, that
first analyzes the scrambled state and based on the configuration it chooses a
suitable method. Moreover, by restricting to standard stabilizers the robot could
teach how to solve the Cube by demonstration.

6 Conclusion and Future Work

We have shown how different subgroup chains in a permutation group correspond
to different Frobenius-Lagrange coordinatizations of that permutation group, as
well as to different solving strategies for manipulation. In particular, we showed
that solving strategies for permutation puzzles can be represented by a subgroup
chain, which determines a hierarchical decomposition. Coordinatewise manipu-
lation of the permutation group via short or minimal length words over group’s
basic generators is an easily achievable next step.

For exploitation of the idea of hierarchical coordinatization in more general
settings, groups can generalized to semigroups in order allow the possibility of
some irreversible manipulations [5, 7, 26].

Acknowledgment. The research reported in this paper was funded in part by
the European Union’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 318202.

References

1. Ronald J. Brachman and Hector J. Levesque. Knowledge Representation and Rea-
soning. Morgan Kaufmann, 2004.

2. Peter J. Cameron. Permutation Groups. London Mathematical Society, 1999.
3. John D. Dixon and Brian Mortimer. Permutation Groups. Graduate Texts in

Mathematics 163. Springer, 1996.
4. A. Egri-Nagy, C. L. Nehaniv, J. L. Rhodes, and M. J. Schilstra. Automatic analysis

of computation in biochemical reactions. BioSystems, 94(1-2):126–134, 2008.
5. Attila Egri-Nagy, James D. Mitchell, and Chrystopher L. Nehaniv. Sgpdec: Cas-

cade (de)compositions of finite transformation semigroups and permutation groups.
In Hoon Hong and Chee Yap, editors, Mathematical Software ICMS 2014, volume
8592 of Lecture Notes in Computer Science, pages 75–82. Springer Berlin Heidel-
berg, 2014.

6. Attila Egri-Nagy and Chrystopher L. Nehaniv. Algebraic hierarchical decomposi-
tion of finite state automata: Comparison of implementations for Krohn-Rhodes
Theory. In Conference on Implementations and Applications of Automata CIAA
2004, volume 3317 of Springer Lecture Notes in Computer Science, pages 315–316,
2004.

7. Attila Egri-Nagy, Chrystopher L. Nehaniv, and James D. Mitchell. SgpDec –
software package for hierarchical decompositions and coordinate systems, Version
0.7+, 2013. http://sgpdec.sf.net.

8. Samuel Eilenberg. Automata, Languages and Machines, volume B. Academic
Press, 1976.

9. Gilles Fauconnier and Mark Turner. The Way We Think: Conceptual Blending
and the Mind’s Hidden Complexities. Basic Books, 2003.

10. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.5,
2014. www.gap-system.org.

11. Joseph Goguen. An introduction to algebraic semiotics with application to user
interface design. In Computation for Metaphor, Analogy and Agents, volume 1562
of Lecture Notes in Artificial Intelligence, pages 242–291. Springer Verlag, 1999.

12. Joseph A. Goguen and Grant Malcolm, editors. Software Engineering with OBJ:
Algebraic Specification in Action. Springer Verlag, 2000.

13. Marshall Hall. The Theory of Groups. The Macmillan Company, New York, 1959.
14. W. M. L. Holcombe. Algebraic Automata Theory. Cambridge University Press,

1982.
15. Hugh F. Jones. Group Theory, Representations and Physics. Adam Hilger, 1990.
16. David Joyner. Adventures in Group Theory. John Hopkins University Press, 2002.
17. Kenneth Krohn, John L. Rhodes, and Bret R. Tilson. The prime decomposition

theorem of the algebraic theory of machines. In Michael A. Arbib, editor, Alge-
braic Theory of Machines, Languages, and Semigroups, chapter 5, pages 81–125.
Academic Press, 1968.

18. John Laird, Allen Newell, , and Paul Rosenbloom. SOAR: An architecture for
general intelligence. Artificial Intelligence, 33(1):1–64, September 1987.

19. S. Y. W. Li, A. Blandford, P. Cairns, and R. M. Young. Post-completion errors in
problem solving. In Proceedings of the Twenty-Seventh Annual Conference of the
Cognitive Science Society, Hillsdale, NJ, 2005. Lawrence Erlbaum Associates.

20. C. L. Nehaniv. Algebraic models for understanding: Coordinate systems and cog-
nitive empowerment. In Proc. Second International Conference on Cognitive Tech-
nology: Humanizing the Information Age, pages 147–162. IEEE Computer Society
Press, 1997.

21. Chrystopher L. Nehaniv. Algebra and formal models of understanding. In
Masami Ito, editor, Semigroups, Formal Languages and Computer Systems, vol-
ume 960, pages 145–154. Kyoto Research Institute for Mathematics Sciences, RIMS
Kokyuroku, August 1996.

http://sgpdec.sf.net
http://sgpdec.sf.net
http://www.gap-system.org
www.gap-system.org

22. Allen Newell. Unified Theories of Cognition. Harvard University Press, 1990.
23. Peter J. Olver. Applications of Lie Groups to Differential Equations. Springer

Verlag, 2nd edition, 2000.
24. K. V. Raman. Group Theory and Its Applications to Chemistry. Tata McGraw-Hill,

2004.
25. L. M. Reder and C. D. Schunn. Metacognition does not imply awareness: Strategy

choice is governed by implicit learning and memory. In Lynne M. Reder, editor,
Implicit Memory and Metacognition, pages 45–77. Erlbaum, Hillsdale, NJ, 1996.

26. John Rhodes. Applications of Automata Theory and Algebra via the Mathematical
Theory of Complexity to Biology, Physics, Psychology, Philosophy, and Games.
World Scientific Press, 2009. Foreword by Morris W. Hirsch, edited by Chrystopher
L. Nehaniv (Original version: University of California at Berkeley, Mathematics
Library, 1971).

27. Derek J. S. Robinson. A Course in the Theory of Groups. Springer, 2nd edition,
1995.

28. Christopher C. Wiggs and Christopher J. Taylor. Mechanical puzzle marketed as
Rubik’s Clock. Patent EP0322085, 1989.

29. J. Zhang and D. A. Norman. A representational analysis of numeration systems.
Cognition, 57:271–295, 1995.

	Computational Understanding and Manipulation of Symmetries

