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Abstract. Decision procedures can be either theory specific, e.g., Pres-
burger arithmetic, or theory-generic, applying to an infinite number of
user-definable theories. Variant satisfiability is a theory-generic proce-
dure for quantifier-free satisfiability in the initial algebra of an order-
sorted equational theory pΣ,EYBq under two conditions: (i) EYB has
the finite variant property and B has a finitary unification algorithm;
and (ii) pΣ,EYBq protects a constructor subtheory pΩ,EΩ YBΩq that
is OS-compact. These conditions apply to many user-definable theories,
but have a main limitation: they apply well to data structures, but of-
ten do not hold for user-definable predicates on such data structures.
We present a theory-generic satisfiability decision procedure, and a pro-
totype implementation, extending variant-based satisfiability to initial
algebras with user-definable predicates under fairly general conditions.

Keywords: finite variant property (FVP), OS-compactness, user-definable
predicates, decidable validity and satisfiability in initial algebras.

1 Introduction

Some of the most important recent advances in software verification are due to
the systematic use of decision procedures in both model checkers and theorem
provers. However, a key limitation in exploiting the power of such decision pro-
cedures is their current lack of extensibility. The present situation is as follows.
Suppose a system has been formally specified as a theory T about which we want
to verify some properties, say ϕ1, . . . , ϕn, using some model checker or theorem
prover that relies on an SMT solver for its decision procedures. This limits a
priori the decidable subtheory T0 Ď T that can be handled by the SMT solver.
Specifically, the SMT solver will typically support a fixed set Q1, . . . , Qk of de-
cidable theories, so that, using a theory combination method such as those the
Nelson and Oppen [29], or Shostak [30], T0 must be a finite combination of the
decidable theories Q1, . . . , Qk supported by the SMT solver.

In non-toy applications it is unrealistic to expect that the entire specification
T of a software system will be decidable. Obviously, the bigger the decidable sub-
theory T0 Ď T , the higher the levels of automation and the greater the chances
of scaling up the verification effort. With theory-specific procedures for, say,
Q1, . . . , Qk, the decidable fragment T0 of T is a priori bounded. One promising
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way to extend the decidable fragment T0 is to develop theory-generic satisfia-
bility procedures. These are procedures that make decidable not a sigle theory
Q, but an infinite class of user-specifiable theories. Therefore, an SMT solver
supporting both theory-specific and theory-generic decision procedures becomes
user-extensible and can carve out a potentially much bigger decidable fragment
T0 of the given system specification T .

Variant-based satisfiability [24,25] is a recent theory-generic decision proce-
dure applying to the following, easily user-specifiable infinite class of equational
theories pΣ,E Y Bq: (i) Σ is an order-sorted [16] signature of function sym-
bols, supporting types, subtypes, and subtype polymorphism; (ii) E Y B has
the finite variant property [9] and B has a finitary unification algorithm; and
(iii) pΣ,E Y Bq protects a constructor subtheory pΩ,EΩ Y BΩq that is OS-
compact [24,25]. The procedure can then decide satisfiability in the initial algebra
TΣ{EYB , that is, in the algebraic data type specified by pΣ,E Y Bq. These con-
ditions apply to many user-definable theories, but have a main limitation: they
apply well to data structures, but often do not hold for user-definable predicates.

The key reason why user-definable predicates present a serious obstacle is
the following. Variant satisfiability works by reducing satisfiability in the ini-
tial algebra TΣ{EYB to satisfiability in the much simpler algebra of construc-
tors TΩ{EΩYBΩ . In many applications EΩ “ H, and if the axioms BΩ are
any combination of associativity, commutativity and identity axioms, except
associativity without commutativity, then pΩ,BΩq is an OS-compact theory
[24,25], making satisfiability in TΩ{BΩ and therefore in TΣ{EYB decidable. We
can equationally specify a predicate p with sorts A1, . . . , An in a positive way
as a function p : A1, . . . , An Ñ Pred , where the sort Pred of predicates con-
tains a “true” constant tt , so that ppu1, . . . , unq not holding for concrete ground
arguments u1, . . . , un is expressed as the disequality ppu1, . . . , unq “ tt . But
ppu1, . . . , unq “ tt means that p must be a constructor of sort Pred in Ω, and
that the equations defining p must belong to EΩ , making EΩ “ H and ruling
out the case when TΩ{EΩYBΩ “ TΩ{BΩ is decidable by OS-compactness.

This work extends variant-based satisfiability to initial algebras with user-
definable predicates under fairly general conditions using two key ideas: (i) char-
acterizing the cases when ppu1, . . . , unq “ tt by means of constrained patterns;
and (ii) eliminating all occurrences of disequalities of the form ppv1, . . . , vnq “ tt
in a quantifier-free (QF) formula by means of such patterns. In this way, the QF
satisfiability problem can be reduced to formulas involving only non-predicate
constructors, for which OS-compactness holds in many applications. More gen-
erally, if some predicates fall within the OS-compact fragment, they can be kept.

Section 2 gathers preliminaries. Constructor variants and OS-compactness
are discussed in Section 3. The theory-generic satisfiability decision procedure
is defined and proved correct in Section 4, and its prototype implementation is
described in Section 5. Related work and conclusions are discussed in Section 6.
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2 Order-Sorted Algebra, Rewriting, and Variants

We summarize the order-sorted algebra, order-sorted rewriting, and finite variant
notions needed in the paper. The material, adapted from [26,14]. It assumes
the notions of many-sorted signature and many-sorted algebra, e.g., [13], which
include unsorted signatures and algebras as a special case.

Definition 1. An order-sorted (OS) signature is a triple Σ “ ppS,ďq, Σq with

pS,ďq a poset of sorts and pS,Σq a many-sorted signature. pS “ S{”ď, the
quotient of S under the equivalence relation ”ď “ pď Y ěq

`, is called the set of
connected components of pS,ďq. The order ď and equivalence ”ď are extended
to sequences of same length in the usual way, e.g., s11 . . . s

1
n ď s1 . . . sn iff s1i ď si,

1 ď i ď n. Σ is called sensible if for any two f : w Ñ s, f : w1 Ñ s1 P Σ, with w
and w1 of same length, we have w ”ď w

1 ñ s ”ď s
1. A many-sorted signature

Σ is the special case where the poset pS,ďq is discrete, i.e., s ď s1 iff s “ s1.
Σ “ ppS,ďq, Σq is a subsignature of Σ1 “ ppS1,ď1q, Σ1q, denoted Σ Ď Σ1, iff
S Ď S1, ď Ď ď1, and Σ Ď Σ1.

For connected components rs1s, . . . , rsns, rss P pS

f
rs1s...rsns
rss “ tf : s11 . . . s

1
n Ñ s1 P Σ | s1i P rsis, 1 ď i ď n, s1 P rssu

denotes the family of “subsort polymorphic” operators f . 2

Definition 2. For Σ “ pS,ď, Σq an OS signature, an order-sorted Σ-algebra
A is a many-sorted pS,Σq-algebra A such that:

– whenever s ď s1, then we have As Ď As1 , and

– whenever f : w Ñ s, f : w1 Ñ s1 P f
rs1s...rsns
rss and a P Aw X Aw

1

, then we

have Af :wÑspaq “ Af :w1Ñs1paq, where Aε “ 1 (ε denotes the empty string
and 1 “ t0u is a singleton set), and As1...sn “ As1 ˆ . . .ˆAsn .

An order-sorted Σ-homomorphism h : A Ñ B is a many-sorted pS,Σq-
homomorphism such that whenever rss “ rs1s and a P As X As1 , then we have
hspaq “ hs1paq. Call h injective, resp. surjective, resp. bijective, iff for each s P S
hs is injective, resp. surjective, resp. bijective. Call h an isomorphism if there
is another order-sorted Σ-homomorphism g : B Ñ A such that for each s P S,
hs; gs “ 1As , and gs;hs “ 1Bs , with 1As , 1Bs the identity functions on As, Bs.
This defines a category OSAlgΣ. 2

Theorem 1. [26] The category OSAlgΣ has an initial algebra. Furthermore, if
Σ is sensible, then the term algebra TΣ with:

– if a : εÑ s then a P TΣ,s,

– if t P TΣ,s and s ď s1 then t P TΣ,s1 ,

– if f : s1 . . . sn Ñ s and ti P TΣ,si 1 ď i ď n, then fpt1, . . . , tnq P TΣ,s,

is initial, i.e., there is a unique Σ-homomorphism from TΣ to each Σ-algebra.



4 R. Gutierrez and J. Meseguer

TΣ will (ambiguously) denote both the above-defined S-sorted set and the

set TΣ “
Ť

sPS TΣ,s. For rss P pS, TΣ,rss “
Ť

s1Prss TΣ,s1 . An OS signature Σ
is said to have non-empty sorts iff for each s P S, TΣ,s “ H. We will assume
throughout that Σ has non-empty sorts. An OS signature Σ is called preregular
[16] iff for each t P TΣ the set ts P S | t P TΣ,su has a least element, denoted
lsptq. We will assume throughout that Σ is preregular.

An S-sorted set X “ tXsusPS of variables, satisfies s “ s1 ñ Xs XXs1 “ H,
and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣpXq, is the initial algebra for the signature
ΣpXq obtained by adding to Σ the variables X as extra constants. Since a ΣpXq-
algebra is just a pair pA,αq, with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α P rXÑAs, the ΣpXq-initiality of
TΣpXq can be expressed as the following corollary of Theorem 1:

Theorem 2. (Freeness Theorem). If Σ is sensible, for each A P OSAlgΣ and
α P rXÑAs, there exists a unique Σ-homomorphism, α : TΣpXq Ñ A extending
α, i.e., such that for each s P S and x P Xs we have xαs “ αspxq.

In particular, when A “ TΣpXq, an interpretation of the constants in X, i.e.,
an S-sorted function σ P rXÑTΣpXqs is called a substitution, and its unique
homomorphic extension σ : TΣpXq Ñ TΣpXq is also called a substitution. De-
fine dompσq “ tx P X | x “ xσu, and ranpσq “

Ť

xPdompσq varspxσq. A variable
specialization is a substitution ρ that just renames a few variables and may lower
their sort. More precisely, dompρq is a finite set of variables tx1, . . . , xnu, with
respective sorts s1, . . . , sn, and ρ injectively maps the x1, . . . , xn to variables
x11, . . . , x

1
n with respective sorts s11, . . . , s

1
n such that s1i ď si, 1 ď i ď n.

The first-order language of equational Σ-formulas is defined in the usual
way: its atoms are Σ-equations t “ t1, where t, t1 P TΣpXqrss for some rss P pS
and each Xs is assumed countably infinite. The set FormpΣq of equational Σ-
formulas is then inductively built from atoms by: conjunction (^), disjunction
(_), negation ( ), and universal (@x:s) and existential (Dx:s) quantification with
sorted variables x:s P Xs for some s P S. The literal  pt “ t1q is denoted t “ t1.

Given aΣ-algebra A, a formula ϕ P FormpΣq, and an assignment α P rYÑAs,
with Y “ fvarspϕq the free variables of ϕ, the satisfaction relation A,α |ù ϕ is
defined inductively as usual. We say that ϕ is valid in A, denoted A |ù ϕ, iff
A,α |ù ϕ holds for each α P rYÑAs, where Y “ fvarspϕq. We say that ϕ is
satisfiable in A iff Dα P rYÑAs such that A,α |ù ϕ, where Y “ fvarspϕq. For a
subsignature Ω Ď Σ and A P OSAlgΣ , the reduct A|Ω P OSAlgΩ agrees with
A in the interpretation of all sorts and operations in Ω and discards everything
in Σ ´Ω. If ϕ P FormpΩq we have the equivalence A |ù ϕ ô A|Ω |ù ϕ.

An OS equational theory is a pair T “ pΣ,Eq, with E a set of Σ-equations.
OSAlgpΣ,Eq denotes the full subcategory of OSAlgΣ with objects those A P

OSAlgΣ such that A |ù E, called the pΣ,Eq-algebras. OSAlgpΣ,Eq has an
initial algebra TΣ{E [26]. The inference system in [26] is sound and complete
for OS equational deduction, i.e., for any OS equational theory pΣ,Eq, and
Σ-equation u “ v we have an equivalence E $ u “ v ô E |ù u “ v.
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Deducibility E $ u “ v is often abbreviated as u “E v and called E-equality. A
preregular signature Σ is called E-preregular iff for each u “ v P E and variable
specialization ρ, lspuρq “ lspvρq.

In the above logical notions there is only an apparent lack of predicate sym-
bols: full order-sorted first-order logic can be reduced to order-sorted algebra
and the above language of equational formulas. The essential idea is to view a
predicate ppx1 :s1, . . . , xn :snq as a function symbol p : s1 . . . sn Ñ Pred , with
Pred , a new sort having a constant tt . The reduction to OS algebra is achieved
as follows. An OS-FO signature, is a pair pΣ,Πq with Σ an OS signature with
set of sorts S, and Π an S˚-indexed set Π “ tΠwuwPS˚ of predicate symbols. We
associate to an OS-FO signature pΣ,Πq an OS signature pΣ YΠq by adding to
Σ a new sort Pred with a constant tt in its own separate connected component
tPredu, and viewing each p P Πw as a function symbol p : s1 . . . sn Ñ Pred .
The reduction at the model level is now very simple: each OS pΣ YΠq-algebra
A defines a pΣ,Πq-model A˝ with Σ-algebra structure A|Σ and having for each
p P Πw the predicate interpretation A˝p “ A´1

p:wÑPredpttq. The reduction at the
formula level is also quite simple: we map a pΣ,Πq-formula ϕ to an equational
formula rϕ, called its equational version, by just replacing each atom ppt1, . . . , tnq
by the equational atom ppt1, . . . , tnq “ tt . The correctness of this reduction is
just the easy to check equivalence:

A˝ |ù ϕ ô A |ù rϕ.

An OS-FO theory is just a pair ppΣ,Πq, Γ q, with pΣ,Πq an OS-FO signature

and Γ a set of pΣ,Πq-formulas. Call ppΣ,Πq, Γ q equational iff pΣ Y Π, rΓ q is
an OS equational theory. By the above equivalence and the completeness of
OS equational logic such theories allow a sound and complete use of equational
deduction also with predicate atoms. Note that if ppΣ,Πq, Γ q is equational, it is
a very simple type of theory in OS Horn Logic with Equality and therefore has
an initial model TpΣ,Πq,Γ [15]. A useful, easy to check fact is that we have an
identity: T ˝

ΣYΠ{ rΓ
“ TpΣ,Πq,Γ . We will give various natural examples of OS-FO

equational theories (in the form pΣ YΠ, rΓ q) later in the paper.
Recall the notation for term positions, subterms, and term replacement from

[10]: (i) positions in a term viewed as a tree are marked by strings p P N˚
specifying a path from the root, (ii) t|p denotes the subterm of term t at position
p, and (iii) trusp denotes the result of replacing subterm t|p at position p by u.

Definition 3. A rewrite theory is a triple R “ pΣ,B,Rq with pΣ,Bq an order-
sorted equational theory and R a set of Σ-rewrite rules, i.e., sequents l Ñ r,
with l, r P TΣpXqrss for some rss P pS. In what follows it is always assumed that:

1. For each lÑ r P R, l R X and varsprq Ď varsplq.
2. Each rule l Ñ r P R is sort-decreasing, i.e., for each variable specialization

ρ, lsplρq ě lsprρq.
3. Σ is B-preregular.
4. Each equation u “ v P B is regular, i.e., varspuq “ varspvq, and linear, i.e.,

there are no repeated variables in u, and no repeated variables in v.
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The one-step R,B-rewrite relation t ÑR,B t1, holds between t, t1 P TΣpXqrss,

rss P pS, iff there is a rewrite rule l Ñ r P R, a substitution σ P rXÑTΣpXqs,
and a term position p in t such that t|p “B lσ, and t1 “ trrσsp. Note that, by
assumptions (2)–(3) above, trrσsp is always a well-formed Σ-term.

R is called: (i) terminating iff the relation ÑR,B is well-founded; (ii) strictly
B-coherent [27] iff whenever u ÑR,B v and u “B u1 there is a v1 such that
u1 ÑR,B v1 and v “B v1 :

u
R,B
//

B

v

B

u1
R,B
// v1

(iii) confluent iff uÑ˚
R,B v1 and uÑ˚

R,B v2 imply that there are w1, w2 such that
v1 Ñ

˚
R,B w1, v2 Ñ

˚
R,B w2, and w1 “B w2 (where Ñ˚

R,B denotes the reflexive-
transitive closure of ÑR,B); and (iv) convergent if (i)–(iii) hold. If R is conver-
gent, for each Σ-term t there is a term u such that tÑ˚

R,B u and pEvq uÑR,B v.
We then write u “ t!R,B and tÑ!R,Bt!R,B, and call t!R,B the R,B-normal form
of t, which, by confluence, is unique up to B-equality.

Given a set E of Σ-equations, let RpEq “ tuÑ v | u “ v P Eu. A decompo-
sition of an order-sorted equational theory pΣ,Eq is a convergent rewrite theory
R “ pΣ,B,Rq such that E “ E0 Z B and R “ RpE0q. The key property of a
decomposition is the following:

Theorem 3. (Church-Rosser Theorem) [20,27] Let R “ pΣ,B,Rq be a decom-
position of pΣ,Eq. Then we have an equivalence:

E $ u “ v ô u!R,B “B v!R,B .

If R “ pΣ,B,Rq is a decomposition of pΣ,Eq, and X an S-sorted set of
variables, the canonical term algebra CRpXq has CRpXqs “ trt!R,BsB | t P
TΣpXqsu, and interprets each f : s1 . . . sn Ñ s as the function CRpXqf :
pru1sB , . . . , runsBq ÞÑ rfpu1, . . . , unq!R,BsB . By the Church-Rosser Theorem we
then have an isomorphism h : TΣ{EpXq – CRpXq, where h : rtsE ÞÑ rt!R,BsB . In
particular, when X is the empty family of variables, the canonical term algebra
CR is an initial algebra, and is the most intuitive possible model for TΣ{E as an
algebra of values computed by R,B-simplification.

Quite often, the signature Σ on which TΣ{E is defined has a natural decom-
position as a disjoint union Σ “ Ω Z ∆, where the elements of CR, that is,
the values computed by R,B-simplification, are Ω-terms, whereas the function
symbols f P ∆ are viewed as defined functions which are evaluated away by
R,B-simplification. Ω (with same poset of sorts as Σ) is then called a construc-
tor subsignature of Σ. Call a decomposition R “ pΣ,B,Rq of pΣ,Eq sufficiently
complete with respect to the constructor subsignature Ω iff for each t P TΣ we
have: (i) t!R,B P TΩ , and (ii) if u P TΩ and u “B v, then v P TΩ . This ensures
that for each rusB P CR we have rusB Ď TΩ . We will give several examples of
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decompositions Σ “ ΩZ∆ into constructors and defined functions. To simplify
the exposition we assume throughout that for each subsort-polymorphic family

of function symbols f
rs1s...rsns
rss either f

rs1s...rsns
rss Ď Ω or f

rs1s...rsns
rss Ď ∆. Tools

based on tree automata [7], equational tree automata [19], or narrowing [17],
can be used to automatically check sufficient completeness of a decomposition
R with respect to constructors Ω under some assumptions.

As the following definition shows, sufficient completeness is closely related to
the notion of a protecting theory inclusion.

Definition 4. An equational theory pΣ,Eq protects another theory pΩ,EΩq iff
pΩ,EΩq Ď pΣ,Eq and the unique Ω-homomorphism h : TΩ{EΩ Ñ TΣ{E |Ω is an
isomorphism h : TΩ{EΩ – TΣ{E |Ω.

A decomposition R “ pΣ,B,Rq protects another decomposition R0 “ pΣ0, B0, R0q

iff R0 Ď R, i.e., Σ0 Ď Σ, B0 Ď B, and R0 Ď R, and for all t, t1 P TΣ0
pXq

we have: (i) t “B0
t1 ô t “B t1, (ii) t “ t!R0,B0

ô t “ t!R,B, and (iii)
CR0 “ CR|Σ0 .

RΩ “ pΩ,BΩ , RΩq is a constructor decomposition of R “ pΣ,B,Rq iff R
protects RΩ and Σ and Ω have the same poset of sorts, so that by (iii) above R
is sufficiently complete with respect to Ω. Furthermore, Ω is called a subsignature
of free constructors modulo BΩ iff RΩ “ H, so that CRΩ

“ TΩ{BΩ .

The case where all constructor terms are in R,B-normal form is captured by
Ω being a subsignature of free constructors modulo BΩ . Note also that conditions
(i) and (ii) are, so called, “no confusion” conditions, and for protecting extensions
(iii) is a “no junk” condition, that is, R does not add new data to CR0

.
Given an OS equational theory pΣ,Eq and a conjunction of Σ-equations

φ “ u1 “ v1 ^ . . . ^ un “ vn, an E-unifier of φ is a substitution σ such that
uiσ “E viσ, 1 ď i ď n. An E-unification algorithm for pΣ,Eq is an algorithm
generating for each system of Σ-equations φ and finite set of variables W Ě

varspφq a complete set of E-unifiers Unif WE pφq where each τ P Unif WE pφq is
assumed idempotent and with dompτq “ varspφq, and is “away from W” in
the sense that ranpτq X W “ H. The set Unif WE pφq is called “complete” in
the precise sense that for any E-unifier σ of φ there is a τ P Unif Epφq and a
substitution ρ such that σ|W “E pτρq|W , where, by definition, α “E β means
p@x P Xq αpxq “E βpxq for substitutions α, β. Such an algorithm is called
finitary if it always terminates with a finite set Unif WE pφq for any φ.

The notion of variant answers, in a sense, two questions: (i) how can we
best describe symbolically the elements of CRpXq that are reduced substitution
instances of a pattern term t? and (ii) given an original pattern t, how many
other patterns do we need to describe the reduced instances of t in CRpXq?

Definition 5. Given a decomposition R “ pΣ,B,Rq of an OS equational theory
pΣ,Eq and a Σ-term t, a variant3 [9,14] of t is a pair pu, θq such that: (i) u “B

3 For a discussion of similar but not exactly equivalent versions of the variant notion
see [5]. Here we follow the shaper formulation in [14], rather than the one in [9],
because it is technically essential for some results to hold [5].
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ptθq!R,B, (ii) dompθq Ď varsptq, and (iii) θ “ θ!R,B, that is, θpxq “ θpxq!R,B for
all variables x. pu, θq is called a ground variant iff, furthermore, u P TΣ. Given
variants pu, θq and pv, γq of t, pu, θq is called more general than pv, γq, denoted
pu, θq ĚB pv, γq, iff there is a substitution ρ such that: (i) pθρq|varsptq “B γ, and
(ii) uρ “B v. Let JtKR,B “ tpui, θiq | i P Iu denote a complete set of variants of
t, that is, a set of variants such that for any variant pv, γq of t there is an i P I,
such that pui, θiq ĚB pv, γq.

A decomposition R “ pΣ,B,Rq of pΣ,Eq has the finite variant property [9]
(FVP) iff for each Σ-term t there is a finite complete set of variants JtKR,B “
tpu1, θ1q, . . . , pun, θnqu. Since if B has a finitary B-unification algorithm the re-
lation pu, αq ĚB pv, βq is decidable by B-matching, in that case we can always
assume that if R “ pΣ,B,Rq is FVP, JtKR,B can be chosen to be not only com-
plete, but also a set of most general variants, in the sense that for 1 ď i ă j ď n,
pui, θiq ĞB puj , θjq ^ puj , θjq ĞB pui, θiq. Also, given any finite set of variables
W Ě varsptq we can always choose JtKR,B to be of the form JtKWR,B, where each

pui, θiq P JtKWR,B has θi idempotent with dompθiq “ varsptq, and “away from W ,”

in the sense that ranpθiq XW “ H. As for unifiers, JtKexp1,...,expn
R,B abbreviates

JtKWR,B, where W “ varspφq Y
Ť

1ďiďn varspexpiq.

If B has a finitary unification algorithm, the folding variant narrowing strat-
egy described in provides an effective method to generate JtKR,B [14]. Further-
more, folding variant narrowing terminates for each input t P TΣpXq with a
finite set JtKR,B iff R is FVP [14].

The following will be used as a running example of an FVP theory:

Example 1. (Sets of Natural Numbers). Let NatSet “ pΣ,B,Rq be the following
equational theory. Σ has sorts Nat , NatSet and Pred , subsort inclusion Nat ă
NatSet , and decomposes as Σ “ Ωc Z∆, where the constructors Ωc include the
following operators: 0 and 1 of sort Nat , ` : Nat Nat Ñ Nat (addition), H of
sort NatSet , , : NatSet NatSet Ñ NatSet (set union), tt of sort Pred , and a sub-
set containment predicate expressed as a function Ď : NatSet NatSet Ñ Pred .
B decomposes as B “ BΩc Z B∆. The axioms BΩc include: (i) the associa-
tivity and commutativity of ` with identity 0, the associativity and com-
mutativity of , . R decomposes as R “ RΩc Z R∆. The rules RΩc include:
(i) an identity rule for union NS,H Ñ NS; (ii) idempotency rules for union
NS,NS Ñ NS, and NS,NS,NS1 Ñ NS,NS1; and (iii) rules defining the Ď

predicate, H Ď NS Ñ tt, NS Ď NS Ñ tt, and NS Ď NS,NS1 Ñ tt, where NS
and NS1 have sort NatSet . The signature ∆ of defined functions has operators
max : Nat Nat Ñ Nat , min : Nat Nat Ñ Nat , and ´ : Nat Nat Ñ Nat , for the
maximum, minimum and “monus” functions. The axioms B∆ are the commu-
tativity of the max and min functions. The rules R∆ for the defined functions
are: max pN,N `Mq Ñ N `M , minpN,N `Mq Ñ N , N ´ pN `Mq Ñ 0, and
pN `Mq´N ÑM , where N and M have sort Nat .

The predicates P and Ă need not be explicitly defined, since they can be
expressed by the definitional equivalences N P NS “ tt ô N,NS “ NS, and
NS Ă NS1 “ tt ô NS Ď NS1 “ tt ^ NS “ NS1.
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FVP is a semi-decidable property [5], which can be easily verified (when
it holds) by checking, using folding variant narrowing (supported by Maude
2.7), that for each function symbol f : s1 . . . sn Ñ s the term fpx1, . . . , xnq,
with xi of sort si, 1 ď i ď n, has a finite number of most general variants.
Given an FVP decomposition R its variant complexity is the total number n
of variants for all such fpx1, . . . , xnq, provided f has some associated rules of
the form fpt1, . . . , tnq Ñ t1. This gives a rough measure of how costly it is to
perform variant computations relative to the cost of performing B-unification.
The variant complexity of NatSet above is 20.

Folding variant narrowing provides a method for generating a complete set
of E-unifiers. Let pΣ,Eq have a decomposition R “ pΣ,B,Rq with B having
a finitary B-unification algorithm, which we assume extensible by the addition
of free function symbols to Σ. To be able to express systems of equations, say,
u1 “ v1 ^ . . . ^ un “ vn, as terms, we can extend Σ to a signature Σ^ by
adding:

1. for each connected component rss that does not already have a top element,
a fresh new sort Jrss with Jrss ą s1 for each s P rss. In this way we obtain a
(possibly extended) poset of sorts pSJ,ěq;

2. fresh new sorts Lit and Conj with a subsort inclusion Lit ă Conj , with a
binary conjunction operator ^ : Lit Conj Ñ Conj , and

3. for each connected component rss P xSJ with top sort Jrss, binary operators
“ : Jrss Jrss Ñ Lit and “ : Jrss Jrss Ñ Lit .

Variant-based unification goes back to [14]. The following theorem, proved
in detail in [24], gives a more precise characterization using Σ^-terms.

Theorem 4. Under the above assumptions on R, let φ be a system of Σ-
equations viewed as a Σ^-term of sort Conj . Then, for any finite set W of
variables W Ě varspφq, the set VarUnif WE pφq of variant E-unifiers of φ away
from W is by definition the set:

tpθγq|varspφq | pφ
1, θq P JφKWR,B ^ γ P Unif W,θB pφ1

q ^ pφ1γ, pθγq|varspφqq R,B variant of φu

VarUnif WE pφq is a complete set of E-unifiers of φ away from W in the strong
sense that if α is an R,B-normalized E-unifier of φ there exists pθγq|varspφq P

VarUnif WE pφq, were pφ1, θq P JφKWR,B, and an R,B-normalized ρ such that: (i)
α|W “B ppθγq|varspφqρq|W ; and (ii) pφαq!R,B “B φ1γρ.

Furthermore, when R is FVP, the generation of VarUnif WE pφq by folding
variant narrowing of φ followed by B-unification always terminates with a finite
set of unifiers, thus providing a finitary E-unification algorithm.

3 Constructor Variants and OS-Compactness

We gather some technical notions and results needed for the inductive satisfia-
bility procedure given in Section 4. The results on constructor variants are new.
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They complement previous such results in [31] for free constructors modulo ax-
ioms and in [24] for many-sorted constructor variants.

The notion of constructor variant answers the question: what variants of t
cover as instances modulo BΩ all canonical forms of all ground instances of t?
The following lemma gives a precise answer under reasonable assumptions:

Lemma 1. Let R “ pΣ,B,Rq be an FVP decomposition of pΣ,Eq protecting
a constructor decomposition RΩ “ pΩ,BΩ , RΩq. Assume that: (i) Σ “ Ω Z

∆ and for each subsort-polymorphic family of operators f
rs1s...rsns
rss in Σ either

f
rs1s...rsns
rss Ď Ω or f

rs1s...rsns
rss Ď ∆; (ii) B has a finitary B-unification algorithm

and B “ BΩZB∆, with BΩ Ω-equations and if u “ v P B∆, u, v are non-variable
∆-terms. Call JtKΩR,B “ tpv, θq P JtKR,B | v P TΩpXqu the set of constructor
variants of t. If rus P CRΩ

is of the form u “B ptγq!R,B, then there is pv, θq P
JtKΩR,B and a normalized ground substitution τ such that u “B vτ .

Proof. Suppose rus P CRΩ
is of the form u “B ptγq!R,B . We may assume without

loss of generality that γ “ pγq!R,B , so that pu, γq is a ground variant of t.
Therefore, there exists pv, θq P JtKR,B and a normalized substitution τ such that
u “B vτ . We may assume τ ground by restricting it to the variables of v and
by the axioms B being regular. We will be done if we show that v P TΩpXq.
Suppose not. Then v must contain some symbol in ∆, and a fortiori vτ does.
Since u “B vτ there is an equality proof, i.e., a sequence of equality steps using
axioms in either BΩ or B∆. But since all axioms in B are regular and linear
and Ω and ∆ are disjoint, if w R TΩpXq and w “BΩ w1, then w1 R TΩpXq; and
by the further assumption on B∆, if w “B∆ w1, then w,w1 R TΩpXq. But since
u P TΩ , this makes u “B vτ impossible. 2

We finally need the notion of an OS-compact equational OS-FO theory
ppΣ,Πq, Γ q, generalizing the compactness notion in [8]. Given an OS equa-
tional theory pΣ,Eq, call a Σ-equality u “ v E-trivial iff u “E v, and a Σ-
disequality u “ v E-consistent iff u “E v. Likewise, call a conjunction

Ź

D of
Σ-disequalities E-consistent iff each u “ v in D is so. Call a sort s P S finite in
both pΣ,Eq and TΣ{E iff TΣ{E,s is a finite set, and infinite otherwise.

Definition 6. An equational OS-FO theory ppΣ,Πq, Γ q is called OS-compact
iff: (i) for each sort s in Σ we can effectively determine whether s is finite
or infinite in TΣYΠ{ rΓ,, and, if finite, can effectively compute a representative

ground term repprusq P rus for each rus P TΣYΠ{ rΓ,s; (ii) “
rΓ is decidable and

rΓ has a finitary unification algorithm; and (iii) any finite conjunction
Ź

D of

negated pΣ,Πq-atoms whose variables have all infinite sorts and such that
Ź

rD

is rΓ -consistent is satisfiable in TΣ,Π,Γ .
We call an OS equational theory pΣ,Eq OS-compact iff the OS-FO theory

ppΣ,Hq, Eq is so.

The key theorem, generalizing a similar one in [8], is the following:
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Theorem 5. [24,25] If ppΣ,Πq, Γ q is an OS-compact theory, then satisfiability
of QF pΣ,Πq-formulas in TΣ,Π,Γ is decidable.

The following OS-compactness results are proved in detail in [24]: (i) a free
constructor decomposition modulo axioms RΩ “ pΩ,BΩ ,Hq for BΩ any combi-
nation of associativity, commutativity and identity axioms, except associativity
without commutativity, is OS-compact; and (ii) the constructor decompositions
for parameterized modules for lists, compact lists, multisets, sets, and hereditar-
ily finite (HF) sets are all OS-compact-preserving, in the sense that if the actual
parameter has an OS-compact constructor decomposition, then the correspond-
ing instantiation of the parameterized constructor decomposition is OS-compact.

Example 2. The constructor decomposition RΩc “ pΩ,BΩc , RΩcq for the NatSet
theory in Example 1 is OS-compact. This follows from the fact that NatSet
with set containment predicate Ď is just the instantiation of the constructor
decomposition for the parameterized module of (finite) sets in [24] to the natural
numbers with 0, 1, and ` , which is a theory of free constructors modulo
associativity, commutativity and identity 0 for ` and therefore OS-compact
by (i), so that, by (ii), RΩc “ pΩ,BΩc , RΩcq is also OS-compact.

4 QF Satisfiability in Initial Algebras with Predicates

The known variant-based quantifier-free (QF) satisfiability and validity results
[24,25] apply to the initial algebra TΣ{E of an equational theory pΣ,Eq having an
FVP variant-decomposition R “ pΣ,B,Rq protecting a constructor decomposi-
tion RΩ “ pΩ,BΩ , RΩq and such that: (i) B has a finitary unification algorithm;
and (iii) the equational theory of RΩ “ pΩ,BΩ , RΩq is OS-compact.

Example 3. QF validity and satisfiability in the initial algebra TΣ{E for pΣ,Eq
the theory with the NatSet FVP variant-decomposition R “ pΣ,B,Rq in Ex-
ample 1 are decidable because its axioms B have a finitary unification algo-
rithm and, as explained in Example 2, its constructor decomposition RΩ “

pΩ,BΩ , RΩq is OS-compact.

The decidable inductive validity and satisfiability results in [24,25] apply
indeed to many data structures of interest, which may obey structural axioms
B such as commutativity, associativity-commutativity, or identity. Many useful
examples are given in [24], and a prototype Maude implementation is presented
in [31]. There is, however, a main limitation about the range of examples to which
these results apply, which this work directly addresses. The limitation comes
from the introduction of user-definable predicates. Recall that we represent a
predicate p with sorts s1, . . . , sn as a function p : s1, . . . , sn Ñ Pred defined
in the positive case by confluent and terminating equations ppui1, . . . , u

i
nq “ tt ,

1 ď i ď k. The key problem with such predicates p is that, except in trivial cases,
there are typically ground terms ppv1, . . . , vnq for which the predicate does not
hold. This means that p must be a constructor operator of sort Pred which is not
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a free constructor modulo the axioms BΩ . This makes proving OS-compactness
for a constructor decomposition RΩ “ pΩ,BΩ , RΩq including user-definable
predicates a non-trivial case-by-case task, which in some cases is impossible. For
example, the proofs of OS-compactness for the set containment predicate Ď

in the parameterized module of finite sets and for other such predicates in other
FVP parameterized modules in [24] required non-trivial analyses.

Example 4. Consider the following extension by predicates NatSetPreds of the
NatSet theory in Example 1, where the constructor signature Ω “ ΩcZΩΠ adds
the subsignature ΩΠ containing the strict order predicate ą : Nat Nat Ñ
Pred , the “sort predicate” :Nat : NatSet Ñ Pred , characterizing when a set
of natural numbers is a natural, and the even and odd predicates even, odd :
NatSet Ñ Pred , defined by the rules RΠ : N `M ` 1 ą N Ñ tt , N :Nat Ñ
tt , evenpN ` Nq Ñ tt , oddpN ` N ` 1q Ñ tt , where N and M have sort
Nat . NatSetPreds is FVP, but its constructor decomposition RΩ “ pΩc Z
ΩΠ , BΩc , RΩcZRΠq is not OS-compact, since the negation of the trichotomy law
N ąM _M ą N _N “M is the BΩc-consistent but unsatisfiable conjunction
of disequalities N ąM “ tt ^M ą N “ tt ^N “M .

The goal of this work is to provide a decision procedure for validity and
satisfiability of QF formulas in the initial algebra of an FVP theory R that
may contain user-definable predicates and protects a constructor decomposi-
tion RΩ that need not be OS-compact, under the following reasonable as-
sumptions: (1) R “ p∆ Z Ωc Z ΩΠ , B∆ Z BΩc , R∆ Z RΩc Z RΠq protects
RΩ “ pΩc Z ΩΠ , BΩc , RΩc Z RΠq, where ΩΠ consists only of predicates, and
RΠ consists of rules of the form ppui1, . . . , u

i
nq Ñ tt , 1 ď i ď kp, defining

each p P ΩΠ ; furthermore, RΩ satisfies conditions (i)–(ii) in Lemma 1; (2)
RΩc “ pΩc, BΩc , RΩcq is OS-compact, its finite sorts (if any) are different from
Pred , and is the constructor decomposition of p∆Z Ωc, B∆ Z BΩc , R∆ Z RΩcq;
and (3) each p P ΩΠ has an associated set of negative constrained patterns of
the form:

ľ

1ďlďnj

wj l “ w
1,j
l ñ ppvj1, . . . , v

j
nq “ tt , 1 ď j ď mp

where the wj l and w
1,j
l are Ωc-terms with variables among those in Yj “

varspppvj1, . . . , v
j
nqq. These negative constrained patterns are interpreted as

meaning that the following semantic equivalences are valid in CR for each p P ΩΠ ,
where ρj P tρ P rYjÑTΩcs | ρ “ ρ!R,Bu, B “ B∆ZBΩc , and R “ R∆ZRΩcZRΠ :

rppvj1, . . . , v
j
nqρjs P CR ô

ľ

1ďlďnj

pwj l “ w
1,j
lqρj

rppt1, . . . , tnqs P CR ô DjDρj rppt1, . . . , tnqs “ rppv
j
1, . . . , v

j
nqρjs^

ľ

1ďlďnj

pwj l “ w
1,j
lqρj

The first equivalence means that any instance of a negative pattern by a nor-
malized ground substitution ρj satisfying its constrain is normalized, so that
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CR |ù ppvj1, . . . , v
j
nqρj “ tt . The second means that rppt1, . . . , tnqs P CR iff

rppt1, . . . , tnqs instantiates a negative pattern satisfying its constraint.

Example 5. The module NatSetPreds from Example 4 satisfies above conditions
(1)–(3). Indeed, (1), including conditions (i)–(ii) in Lemma 1, follows easily from
its definition and that of NatSet , and (2) follows also easily form the definition of
NatSet and the remarks in Example 2. This leaves us with condition (3), where
the negative constrained patterns for ΩΠ “ t ą , even, odd , :Natu are the
following:

– N ą N `M “ tt
– evenpN `N ` 1q “ tt , pN Ď NS “ tt ^ NS “ Hq ñ evenpN,NSq “ tt
– oddpN `Nq “ tt , pN Ď NS “ tt ^ NS “ Hq ñ oddpN,NSq “ tt
– pN Ď NS “ tt ^ NS “ Hq ñ pN,NSq :Nat “ tt .

where N and M have sort Nat and NS sort Natset . As explained in Appendix
A, the first equivalence can be automatically checked using variant satisfiability.
That the two equivalences hold in CR for these predicates and their patterns is
proved in detail in Appendix A.

4.1 The Inductive Satisfiability Decision Procedure

Assume R satisfies conditions (1)–(3) above and let Σ “ ∆ Z Ωc Z ΩΠ , and
E be the axioms B plus the equations associated to the rules R in R. Given a
QF Σ-formula ϕ the procedure decides if ϕ is satisfiable in CR. We can reduce
the inductive validity decision problem of whether CR |ù ϕ to deciding whether
 ϕ is unsatisfiable in CR. Since any QF Σ-formula ϕ can be put in disjunctive
normal form, a disjunction is satisfiable in CR iff one of the disjuncts is, and all
predicates have been turned into functions of sort Pred , it is enough to decide
the satisfiability of a conjunction of Σ-literals of the form

Ź

G ^
Ź

D, where
the G are equations and the D are disequations. The procedure performs the
following steps:

1. Unification. Satisfiability of the conjunction
Ź

G^
Ź

D is replaced by satis-
fiability for some conjunction in the set tp

Ź

Dαq!R,B | α P VarUnif Ep
Ź

Gqu,
discarding any obviously unsatisfiable p

Ź

Dαq!R,B in such a set.
2. Π-Elimination. After Step (1), each conjunction is a conjunction of dis-

equalities
Ź

D1. If
Ź

D1 is a ∆ Z Ωc-formula, we go directly to Step (3);
otherwise

Ź

D1 has the form
Ź

D1 “
Ź

D1 ^ ppt1, . . . , tnq “ tt ^
Ź

D2,
where p P ΩΠ and D1 and/or D2 may be empty conjunctions. We then
replace

Ź

D1 by all not obviously unsatisfiable conjunctions of the form:

p
ľ

D1 ^
ľ

1ďlďnj

wj l “ w
1,j
l ^

ľ

D2qθα

where pppt11, . . . , t
1
nq, θq P Jppt1, . . . , tnqKΩR,B , α is a disjoint BΩc-unifier of the

equation ppt11, . . . , t
1
nq “ ppvj1, . . . , v

j
nq (i.e., the two sides are renamed to
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share no variables), and 1 ď j ď mp. That is, we use the negative constrained
patterns of p and the constructor variants of ppt1, . . . , tnq to eliminate the
disequality ppt1, . . . , tnq “ tt . If any such disequalities remain in p

Ź

D1 ^
Ź

D2qθα for some p1 P ΩΠ , we keep applying Step 2 until none remains.
3. Computation of Ω^c -Variants and Elimination of Finite Sorts. For

Ź

D1 a ∆ Z Ωc-conjunction of disequalities, viewed as a p∆ Z Ωcq
^-term

its constructor Ω^c -variants are of the form p
Ź

D2, γq, with
Ź

D2 an Ωc-
conjunction of disequalities. The variables of

Ź

D2 are then Yfin Z Y8, with
Yfin the variables whose sorts are finite, and Y8 the variables with infinite
sorts. Compute all normalized ground substitution τ of the variables Yfin

obtained by: (i) independently choosing for each variable y P Yfin a canonical
representative for the sort of y in all possible ways, and (ii) checking that for
the τ so chosen

Ź

D2τ is normalized, keeping τ if this holds and discarding
it otherwise. Then

Ź

D1 is satisfiable in CR iff some
Ź

D2τ so obtained is
BΩc-consistent for some Ω^c -variant p

Ź

D2, γq of
Ź

D1.

Example 6. We can illustrate the use of the above decision procedure by proving
the validity of the QF formula oddpNq “ tt ô evenpNq “ tt in the initial
algebra CR of NatSetPreds. That is, we need to show that its negation poddpNq “
tt ^ evenpNq “ ttq _ poddpNq “ tt ^ evenpNq “ ttq is unsatisfiable in CR.
Applying the Unification step to the first disjunct oddpNq “ tt^evenpNq “ tt
no variant unifiers are found, making this disjunct unsatisfiable. Applying the
Π-Elimination step to the first disequality in the second disjunct oddpNq “
tt ^ evenpNq “ tt , since the only constructor variant of oddpNq different from
tt is the identity variant, and the only disjoint BΩc-unifier of oddpNq with the
negative patterns for odd is tN ÞÑ M `Mu for the (renamed) unconstrained
negative pattern oddpM `Mq “ tt , we get the disequality evenpM `Mq “ tt ,
whose normal form tt “ tt is unsatisfiable.

Theorem 6. For FVP R “ p∆ZΩcZΩΠ , B∆ZBΩc , R∆ZRΩcZRΠq protecting
RΩ “ pΩc Z ΩΠ , BΩc , RΩc Z RΠq and satisfying above conditions (1)–(3), the
above procedure correctly decides the satisfiability of a QF Σ-formula ϕ in the
canonical term algebra CR.

Proof. The procedure clearly terminates. In particular, the Π-Elimination step
reduces the number of Π-symbols in a conjunction by one. Since each step trans-
forms a conjunction into a set of other conjunctions, we will be done if we show
that in each such transformation the given conjunction and the resulting set of
conjunctions (viewed as a disjunction) are equi-satisfiable in CR.

Unification. If p
Ź

Dαq!R,B with α P VarUnif Ep
Ź

Gqu is satisfiable in CR by
some normalized ground substitution ρ, then pαρq!R,B satisfies

Ź

G^
Ź

D in CR.
Conversely, if a normalized ground substitution ρ satisfies

Ź

G ^
Ź

D in CR,
by the Church-Rosser Theorem ρ is a ground E-unifier of

Ź

G and therefore
there exists α P VarUnif WE p

Ź

Gqu and a normalized substitution γ such that
ρ|W “B pαγq|W with W “ varsp

Ź

G ^
Ź

Dq. But this means that γ is a
satisfying assignment for p

Ź

Dαq!R,B in CR.
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Π-Elimination. If a normalized ground substitution ρ is a satisfying assign-
ment for p

Ź

D1^
Ź

1ďlďnj
wj l “ w

1,j
l^

Ź

D2qθα in CR, where pppt11, . . . , t
1
nq, θq P

Jppt1, . . . , tnqKΩR,B , α is aBΩc -unifier of the equation ppt11, . . . , t
1
nq “ ppvj1, . . . , v

j
nq,

and and 1 ď j ď mp, then by the first semantic fact about negative con-
strained patterns we have that pppt1, . . . , tnqθαρq!R,B “ ppvj1, . . . , v

j
nqαρ, so

that pθαρq!R,B is a satisfying assignment for
Ź

D1 ^ ppt1, . . . , tnq “ tt ^
Ź

D2

in CR. Conversely, if ρ is a normalized ground substitution satisfying
Ź

D1 ^

ppt1, . . . , tnq “ tt ^
Ź

D2 in CR, then pppt1, . . . , tnqρq!R,B must be different from
tt , i.e., of the form ppu1, . . . , unq. Let W “ varsp

Ź

D1^ppt1, . . . , tnq “ tt
Ź

D2q

and Wp “ varspppt1, . . . , tnqq, so that W “WpZW
1. By the notion of construc-

tor variant we must have pppt11, . . . , t
1
nq, θq P Jppt1, . . . , tnqKΩR,B and a normal-

ized a ground substitution γ such that pppt1, . . . , tnqρq!R,B “B ppt11, . . . , t
1
nqγ “

pppt11, . . . , t
1
nqγq!R,B and ρ|Wp

“B θγ, so that ρ|W 1 Z θγ is also a normalized
ground substitution satisfying

Ź

D1 ^ ppt1, . . . , tnq “ tt ^
Ź

D2 in CR in CR.
But by the second semantic fact about negative constrained patterns we have a
j, 1 ď j ď mp and a normalized ground substitution ρj of the variables Yj such

that ppt11, . . . , t
1
nqγ “B ppvj1, . . . , v

j
nqρj and

Ź

1ďlďnj
pwj l “ w

1,j
lqρj holds in

CR. Therefore, γZρj is a B unifier of the equation ppt11, . . . , t
1
nq “ ppvj1, . . . , v

j
nq

so that there is a (disjoint) B-unifier α and a normalized ground substitution δ
such that pαδq|YjZvarspppt11,...,t

1
nqq
“B γ Z ρj . Therefore, ρ|W 1 Z δ is a normalized

ground substitution satisfying p
Ź

D1 ^
Ź

1ďlďnj
wj l “ w

1,j
l ^

Ź

D2qθα in CR.

Computation of Ω^c -Variants and Elimination of Finite Sorts. Let
Ź

D1

be a ∆ Z Ωc-conjunction of disequalities and ρ a normalized ground substitu-
tion satisfying

Ź

D1 in CR. Viewing
Ź

D1 as a p∆ Z Ωcq
^-term this implies

that there is a normalized ground substitution τ and a constructor Ω^c -variant
p
Ź

D2, γq of
Ź

D1 such that p
Ź

D1ρq|R,B “BΩc
Ź

D2τ . Therefore, τ is a satisfy-
ing assignment for

Ź

D2 in CR. But
Ź

D2τ normalized implies that
Ź

D2τ |Yfin

is normalized, with τ |Yfin
a choice of canonical representatives for the variables

Yfin up to BΩc-equality, and that τ |Y8 is a satisfying assignment for
Ź

D2τ |Yfin

in CR. Therefore,
Ź

D2τ |Yfin
normalized, the Church-Rosser property, and the

fact that τ |Y8 is a satisfying assignment for
Ź

D2τ |Yfin
in CR force

Ź

D2τ |Yfin

to be BΩc-consistent. Conversely, let p
Ź

D2, γq, with variables Yfin Z Y8, be a
constructor Ω^c -variant of

Ź

D1 and let τ |Yfin
be a canonical choice of repre-

sentatives such that
Ź

D2τ |Yfin
is normalized and BΩc -consistent. Then, by the

Church-Rosser property
Ź

D2τ |Yfin
is also EΩc-consistent for EΩc the equations

associated to the decomposition RΩc “ pΩc, BΩc , RΩcq. Therefore, by assump-
tion (2) there is a normalized satisfying assignment τ |Y8 for

Ź

D2τ |Yfin
in CR,

so that pγpτ |Yfin
Z τ |Y8qq!R,B is a satisfying assignment for

Ź

D1 in CR. 2

4.2 Sort Predicates for Recursive Data Structures

We can axiomatize many (non-circular) recursive data structures as the elements
of an initial algebra TΩ on a many-sorted signature of free constructors Ω. For
example, lists can be so axiomatized with Ω consisting of just two sorts, Elt ,
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viewed as a parametric sort of list elements, and List , a constant nil of sort List ,
and a “cons” constructor ; : Elt List Ñ List .

In general, however, adding to such data structures defined functions cor-
responding to “selectors” that can extract the constituent parts of each data
structure cannot be done in a satisfactory way if we remain within a many-
sorted setting. For example, for lists we would like to have selectors head and
tail (the usual car and cdr in Lisp notation). For head the natural equation
is headpx; lq “ x. Likewise, the natural equation for tail is tailpx; lq “ l. But
this leaves open the problem of how to define headpnilq, for which no satisfac-
tory solution exists. J. Meseguer and J.A. Goguen proposed a simple solution
to this “constructor-selector” problem using initial order-sorted algebras in [28].
The key idea is the following. For each non-constant constructor symbol, say
c : A1 . . . An Ñ B, n ě 1, we introduce a subsort Bc ă B and give the tighter
typing c : A1 . . . An Ñ Bc. The selector problem is now easily solved by asso-
ciating to each non-constant constructor c selector functions selci : Bc Ñ Ai,
1 ď i ď n, defined by the equations selci pcpx1, . . . , xnqq “ xi, 1 ď i ď n.
Outside the subsort Bc the selectors selci are actually undefined. For the above
example of lists this just means adding a subsort List ; ă List , where List ;

is usually written as NeList (non-empty lists), and tightening the typing of
“cons” to ; : Elt List Ñ NeList . In this way the head and tail selectors have
typings head : NeList Ñ Elt and tail : NeList Ñ List , again with equations
headpx; lq “ x and tailpx; lq “ l, with x of sort Elt and l of sort List .

The key facts not just for lists, but for any recursive data structure whose
selectors ∆ have been defined by means of an order-sorted equational the-
ory pΩ Z ∆,E∆q according to the above-described theory transformation are
the following: (i) the equations E∆ are size-reducing and therefore terminat-
ing and, having no critical pairs, they are also confluent; (ii) the decomposition
pΩ Z ∆,H, RpE∆qq has the finite variant property, as can be easily checked
by remarking that for each y of sort Bc selci pyq has just two variants, namely,
pselci pyq, idq, and pxi, ty ÞÑ cpx1, . . . , xnquq; (iii) pΩ,H,Hq is the constructor de-
composition of pΩ Z∆,H, RpE∆qq and therefore is OS-compact. In particular,
by setting ΩΠ “ H and therefore skipping Step 2, the decision procedure we
have proved correct specializes to a decision procedure for satisfiability of QF
Ω Z∆-formulas in TΩZ∆{E∆ for any recursive data structure with selectors.4

We can however increase the expressive power of the language of recursive
data structures by adding sort predicates. Specifically, we add a fresh new sort
Pred with constant tt , and for each subsort Bc ă B a predicate :Bc : B Ñ Pred
defined by the equation y :Bc “ tt , with y of sort Bc. Since it is easy to check
that such predicate-defining equations are terminating and confluent, and each
term z :Bc with z of sort B has exactly two variants, we obtain in this way an
FVP decomposition of the form pΩZΩΠ Z∆,H, RpE∆qZRpEΠqq with EΠ the
above sort-predicate-defining equations. Furthermore, this decomposition satis-
fies conditions (1)–(3), so that the inductive decidability decision procedure for

4 We assume that all sorts are non-empty. For example, the sort Elt for lists is assumed
already instantiated to some data structure of elements.
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initial algebras with user-definable predicates can be applied. The only condition
that needs some explanation is condition (3). Indeed, let a sort B have differ-
ent constructors c, c1, . . . , cm where some of the c1, . . . , cm could be constants.
Then the negative patterns for the sort predicate :Bc are precisely the patterns
cjpz1, . . . , znj q :Bc “ tt , 1 ď j ď m. In summary, we have:

Theorem 7. Let Ω0 be a many-sorted signature of constructors defining an
initial algebra TΩ0

axiomatizing any kind of recursive data structures. Let Ω be
its corresponding order-sorted version and pΩ Z ΩΠ Z ∆,H, RpE∆q Z RpEΠqq
its extension by both selectors ∆ and sort predicates ΩΠ according to the above
transformation. Then QF satisfiability in the initial algebra TΩZΩΠZ∆{E∆ZEΠ is
decidable.

Example 7. (Lists of Naturals with Sort Predicates). We can instantiate the
above order-sorted theory of lists with selectors head and tail by instantiating
the parameter sort Elt to a sort Nat with constant 0, subsort NzNat ă Nat , and
unary constructor s : Nat Ñ NzNat with selector p : NzNat Ñ Nat satisfying
the equation ppspnqq “ n. We then extend this specification with sort predicates

: NzNat : Nat Ñ Pred and : NeList : List Ñ Pred , defined by equations
n1 :NzNat “ tt and l1 :NeList “ tt , with n1 of sort NzNat and l1 of sort NeList .
Their corresponding negative patterns are: 0 :NzNat “ tt and nil :NeList “ tt .

One advantage of adding these sort predicates is that some properties not
expressible as QF formulas become QF-expressible. For example, to state that
every number is either 0 or a non-zero number (resp. every list is either nil or a
non-empty list) we need the formula n “ 0_pDn1q n “ n1 (resp. l “ nil_pDl1q l “
l1), where n has sort Nat and n1 sort NzNat (resp. l has sort List and l1 sort
NeList). But with sort predicates this can be expressed by means of the QF
formula n “ 0_ n :NzNat “ tt (resp. l “ nil _ l :NeList “ tt).

5 Implementation

We have implemented the variant satisfiability decision procedure of Section 4
as a part of a new prototype tool. The implementation consists of 11 new
Maude modules (from 17 total), 2345 new lines of code, and uses the Maude’s
META-LEVEL to carry out the steps of the procedure. We have also developed a
Maude interface to ease the definition of properties and patterns as equations.

Example 8. We show below the running example of the paper in Maude. The
union of modules ACU-NAT-FUN and NAT-SET specifies the equational theory Nat-
Set presented in Example 1. NAT-SET itself specifies the OS-compact constructor
decomposition RΩc in Example 2.

fmod ACU-NAT is

sort Natural .

op 0 : -> Natural [ctor] .
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op 1 : -> Natural [ctor] .

op _+_ : Natural Natural -> Natural [ctor assoc comm id: 0] .

endfm

fmod ACU-NAT-FUN is

pr ACU-NAT .

op max : Natural Natural -> Natural [comm] .

op min : Natural Natural -> Natural [comm] .

op _-_ : Natural Natural -> Natural . *** monus

vars N M : Natural .

eq max(N,N + M) = N + M [variant] .

eq min(N,N + M) = N [variant] .

eq N - (N + M) = 0 [variant].

eq (N + M) - N = M [variant] .

endfm

fmod NAT-SET is

pr ACU-NAT .

sort NaturalSet .

sort Pred .

subsort Natural < NaturalSet .

op mt : -> NaturalSet [ctor] .

op _,_ : NaturalSet NaturalSet -> NaturalSet [ctor assoc comm] .

op tt : -> Pred [ctor] .

*** set containment

op _=C_ : NaturalSet NaturalSet -> Pred [ctor] .

vars NS NS’ : NaturalSet .

*** identity of set union

eq NS , mt = NS [variant] .

*** idempotency of set union

eq NS , NS = NS [variant] .

*** idempotency of set union

eq NS , NS , NS’ = NS , NS’ [variant] .

eq mt =C NS = tt [variant] .
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eq NS =C NS = tt [variant] .

eq NS =C NS , NS’ = tt [variant] .

endfm

The extension NatSetPreds of the theory NatSet in Example 4 is specified
by the NAT-SET-PREDS module.

fmod NAT-SET-PREDS is

pr NAT-SET .

*** strict order

op _>_ : Natural Natural -> Pred [ctor] .

*** sort predicates

op natural : NaturalSet -> Pred [ctor] .

op even : NaturalSet -> Pred [ctor] .

op odd : NaturalSet -> Pred [ctor] .

vars N M : Natural .

eq N + M + 1 > N = tt [variant] .

eq natural(N) = tt [variant] .

eq even(N + N) = tt [variant] .

eq odd(N + N + 1) = tt [variant] .

endfm

A QF formula we want to test for variant satisfiability is specified as a non-
executable equations labeled with the conjecture keyword. The negative pat-
terns of each user-defined predicate outside the OS-compact subtheory are also
specified as non-executable equations labeled with the nPattern keyword.

Suppose we want to prove the inductive validity of the following formulae:

1. N - M “ 0ô pM > N “ tt_ N “ Mq, and
2. natural(NS) “ ttñ peven(NS) “ tt_ odd(NS) “ ttq.

This is equivalent to proving that each conjunction in the DNF of each
negated formula is unsatisfiable. Therefore, our input conjectures are:

1. pN - M “ 0^ M > N ‰ tt^ N ‰ Mq _ pN - M ‰ 0^ M > N “ ttq _ pN - M ‰

0^ N “ Mq for the first formula, and
2. natural(NS) “ tt^even(NS) ‰ tt^odd(NS) ‰ tt for the second formula.

The three conjunctions of the first formula correspond to the equations
prop1a, prop1b and prop1c in module NAT-SET-PRED-CONJECTURES-PATTERNS,
and the second formula corresponds to the equation prop2.

We also specify in module NAT-SET-PRED-CONJECTURES-PATTERNS the neg-
ative patterns described in Example 5.
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mod NAT-SET-PREDS-CONJECTURES-PATTERNS is

pr ATOM-MAGMA-SET .

pr PATTERN .

pr NAT-SET-PREDS .

pr NAT-FUN .

*** patterns

op neg-gr : Natural Natural -> Pattern .

op neg-even : NaturalSet -> Pattern .

op neg-odd : NaturalSet -> Pattern .

op neg-natural : NaturalSet -> Pattern .

*** formulae

op prop1a : Natural Natural -> AtomMagma .

op prop1b : Natural Natural -> AtomMagma .

op prop1c : Natural Natural -> AtomMagma .

op prop2 : NaturalSet -> AtomMagma .

vars N M K : Natural .

var NS : NaturalSet .

eq prop1a(N,M) = (N - M = 0) , (M > N /= tt)

, (N /= M) [nonexec label conjecture] .

eq prop1b(N,M) = (N - M /= 0)

, (M > N = tt) [nonexec label conjecture] .

eq prop1c(N,M) = (N - M /= 0)

, (N = M) [nonexec label conjecture] .

eq prop2(NS) = (natural(NS) = tt) , (even(NS) /= tt)

, (odd(NS) /= tt) [nonexec label conjecture] .

eq neg-gr(N,M) = N > N + M

| (empty).AtomMagma [nonexec label nPattern] .

eq neg-even(N) = even(N + N + 1)

| (empty).AtomMagma [nonexec label nPattern] .

eq neg-even((N , NS)) = even((N, NS))

| ((N =C NS /= tt) , (NS /= mt)) [nonexec label nPattern] .

eq neg-odd(N) = odd(N + N)

| (empty).AtomMagma [nonexec label nPattern] .

eq neg-odd((N , NS)) = odd((N, NS))

| ((N =C NS /= tt) , (NS /= mt)) [nonexec label nPattern] .

eq neg-natural((N , NS)) = natural((N, NS))

| ((N =C NS /= tt) , (NS /= mt)) [nonexec label nPattern] .

endm

In the execution, our main function uses four arguments:
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1. the whole theory pΣ,E Y Uq,
2. the subtheory that contains the predicates,
3. the constructor subtheory pΩ,EΩ YBΩq which is OS-compact, and
4. the patterns and the conjectures.

fmod NAT-SET-PREDS-THEORY is

pr NAT-SET-PREDS .

pr NAT-FUN .

endfm

fmod NAT-SET-PREDS-INTERFACE is

pr NAT-SET-PREDS-THEORY .

pr NU-ITP-INTERFACE .

endfm

red in NAT-SET-PREDS-INTERFACE :

initTheory(upModule(’NAT-SET-PREDS-THEORY,true)

, upModule(’NAT-SET-PREDS,true)

, upModule(’NAT-SET,true)

, upModule(’NAT-SET-PREDS-CONJECTURES-PATTERNS

,false)) .

The three steps of the variant satisfiability procedure take advantage of
Maude’s META-LEVEL functions:

– in the unification step we use the metaVariantUnify function to obtain
the different variants and metaReduce to obtain the normal form of the
conjunction, and

– in the predicate elimination step we use the metaGetIrredundantVariant
function to then filter out the constructorΩc-variants, and the metaDisjointUnify
function to obtain the different instances of the negative patterns.

– in the computation ofΩ^c -variants step we use metaGetIrredundantVariant
function to then filter out constructor Ω^c -variants; the current prototype as-
sumes that all sorts are infinite.

Example 9. Continuing with the above example, consider the check that prop1a
is unsatisfiable:

1. The input conjecture is:

pN - M “ 0^ M > N ‰ tt^ N ‰ Mq

2. After the unification step, we obtain

(V2 + V3) > V2 ‰ tt^ V2 ‰ V2 + V3

where V2 and V3 are variables of sort Natural.
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3. Applying the Π-elimination step, we obtain:

V4 ‰ V4 + 0

where V4 is a variable of sort Natural. After normalization, the formula
becomes BΩc -inconsistent and therefore unsatisfiable.

Similarly, we can check the unsatisfiability of all other conjunctions in this
example, thus proving the validity of the two inductive theorems.

6 Related Work and Conclusions

The original paper proposing the concepts of variant and FVP is [9]. FVP ideas
have been further advanced in [14,6,4,5]. Variant satisfiability has been studied
on [24,25,31]. In relation to that work, the main contribution of this paper is the
extension of variant satisfiability to handle user-definable predicates.

Other theory-generic satisfiability approaches include: (i) the superposition-
based one, e.g., [22,2,21,23,3,1,12,32], where it is proved that a superposition
theorem proving inference system terminates for a given first-order theory to-
gether with any given set of ground clauses representing a satisfiability problem;
and (ii) that of decidable theories defined by means of formulas with triggers
[11], that allows a user to define a new theory with decidable QF satisfiability
by axiomatizing it according to some requirements, and then making an SMT
solver extensible by such a user-defined theory. While not directly comparable
to the present one, these approaches can be seen a complementary ones, further
enlarging the repertoire of theory-generic satisfiability methods.

In conclusion, the present work has extended variant satisfiability to support
initial algebras specified by FVP theories with user-definable predicates under
fairly general conditions. Since such predicates are often needed in specifica-
tions, this substantially enlarges the scope of variant-based initial satisfiability
algorithms. The most obvious next step is to combine the original variant satisfi-
ability algorithm defined in [24,25] and implemented in [31] with the present one.
To simplify both the exposition and the prototype implementation, a few simpli-
fying assumptions, such as the assumption that the signature Ω of constructors
and that ∆ of defined functions share no subsort-overloaded symbols, have been
made. For both greater efficiency and wider applicability, the combined generic
algorithm will drop such assumptions and will use constructor unification [24,31].
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A Equivalences for Negative Patterns in NatSetPreds

In case the positive and negative patterns for user-definable predicates are linear,
the negative patterns are unconditional, and the constructors are free modulo
axioms like associativity and/or commutativity and/or identity, tree automata
techniques such as those in [18] can be used to automatically prove the two
desired semantic equivalences. Since the NatSetPreds example is outside this
case, a different proof is needed. However, the proof that, for R “ NatSetPreds,
CR satisfies the first equivalence:

rppvj1, . . . , v
j
nqρjs P CR ô

ľ

1ďlďnj

pwj l “ w
1,j
lqρj

can be automated using folding variant narrowing. Specifically, it is enough to
show that any non-identity variants of a negative constrained pattern —i.e.,
those corresponding to a reducible instance of the pattern— have substitutions
that violate the pattern’s constraint. Since this is a general technique that can
always be used to automate the proof of the first equivalence, we include all the
details to illustrate the general method.

For the pattern N ą N `M “ tt , Maude2.7.1 returns only the identity variant:

Maude> get irredundant variants in NAT-SET-PREDS : N > N + M .

Variant #1

Pred: #1:Nat > #1:Nat + #2:Nat

N --> #1:Nat

M --> #2:Nat

No more variants.
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For the pattern evenpN `N ` 1q “ tt , we again only get the identity variant:

Maude> get irredundant variants in NAT-SET-PREDS : even(N + N + 1) .

Variant #1

Pred: even(1 + #1:Nat + #1:Nat)

N --> #1:Nat

No more variants.

For the pattern pN Ď NS “ tt ^ NS “ Hq ñ evenpN,NSq “ tt , we get:

Maude> get irredundant variants in NAT-SET-PREDS : even(N,NS) .

Variant #1

Pred: even(#1:Nat,#2:NatSet)

N --> #1:Nat

NS --> #2:NatSet

Variant #2

Pred: even(%1:Nat)

N --> %1:Nat

NS --> mt

Variant #3

Pred: even(%1:Nat)

N --> %1:Nat

NS --> %1:Nat

Variant #4

Pred: even(%1:Nat,%2:NatSet)

N --> %1:Nat

NS --> %1:Nat,%2:NatSet

Variant #5

Pred: tt

N --> #1:Nat + #1:Nat

NS --> mt

Variant #6

Pred: tt

N --> #1:Nat + #1:Nat

NS --> #1:Nat + #1:Nat

No more variants.
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where the constraint NS “ H is violated by variants 2 and 5, and the constraint
N Ď NS “ tt is violated by variants 3, 4 and 6.

For the pattern oddpN `Nq “ tt , we again only get the identity variant:

get irredundant variants in NAT-SET-PREDS : odd(N + N) .

Variant #1

Pred: odd(#1:Nat + #1:Nat)

N --> #1:Nat

No more variants.

For the pattern pN Ď NS “ tt ^ NS “ Hq ñ oddpN,NSq “ tt , again all
non-identity variants violate the pattern’s constraint.

Maude> get irredundant variants in NAT-SET-PREDS : odd(N,NS) .

Variant #1

Pred: odd(#1:Nat,#2:NatSet)

N --> #1:Nat

NS --> #2:NatSet

Variant #2

Pred: odd(%1:Nat)

N --> %1:Nat

NS --> mt

Variant #3

Pred: odd(%1:Nat)

N --> %1:Nat

NS --> %1:Nat

Variant #4

Pred: odd(%1:Nat,%2:NatSet)

N --> %1:Nat

NS --> %1:Nat,%2:NatSet

Variant #5

Pred: tt

N --> 1 + #1:Nat + #1:Nat

NS --> mt

Variant #6

Pred: tt

N --> 1 + #1:Nat + #1:Nat

NS --> 1 + #1:Nat + #1:Nat
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No more variants.

Finally, for the pattern pN Ď NS “ tt ^ NS “ Hq ñ pN,NSq :Nat “ tt , all
non-identity variants again violate the pattern’s constraint.

Maude> get irredundant variants in NAT-SET-PREDS : (N,NS) :Nat .

Variant #1

Pred: (#1:Nat,#2:NatSet) :Nat

N --> #1:Nat

NS --> #2:NatSet

Variant #2

Pred: tt

N --> %1:Nat

NS --> mt

Variant #3

Pred: tt

N --> %1:Nat

NS --> %1:Nat

Variant #4

Pred: (%1:Nat,%2:NatSet) :Nat

N --> %1:Nat

NS --> %1:Nat,%2:NatSet

No more variants.

Since we have already proved that for each predicate the constrained negative
patterns and the patterns corresponding to the lefthand sides of the equations
defining each predicate have mutually disjoint instances (the first irreducible,
and the second reducible), we can prove that the second equivalence

rppt1, . . . , tnqs P CR ô DjDρj rppt1, . . . , tnqs “ rppv
j
1, . . . , v

j
nqρjs^

ľ

1ďlďnj

pwj l “ w
1,j
lqρj

holds in CR by showing that for each predicate p the positive and negative
patterns together are “sufficiently complete,” in the sense that they cover all
instances of p by irreducible ground arguments that are either reducible by the
equations for p or are irreducible.

Consider first the case of the ą predicate. We need to show that the
positive pattern N `M ` 1 ą N and the negative pattern N ą N `M cover
all ground instances of ą by irreducible ground arguments. The key observa-
tions are that: (i) a natural number in this representation is a (possibly empty)
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multiset of 1’s, (ii) given any two such multisets J and K, one of the two mu-
tually exclusive alternatives, J Ą K or J Ď K, holds, (iii) J Ą K holds iff
pDMq J “M `K ` 1 iff J ą K, and (iv) J Ď K holds iff pDMq K “M `K.

Consider next the case of the :Nat predicate, which has the positive pattern
N :Nat with N of sort Nat and the negative pattern pN Ď NS “ tt ^ NS “
Hq ñ pN,NSq :Nat “ tt . Note that any irreducible, non-singleton finite set
of natural numbers has the form n1, . . . , nk, k ą 1, with n1, . . . , nk natural
numbers and ni “ nj if 1 ď i ă j ď k. And observe that any match of n1, . . . , nk
modulo associativity and commutativity with the pattern N,NS (corresponding
to choosing some ni as the instance of N) satisfies the pattern’s constraint.

Since for the even and odd predicates the conditional negative patterns are
completely analogous to the one for the :Nat predicate and exactly cover the
case of irreducible non-singleton sets of natural numbers, we only need to show
that, in each case, the positive pattern and the unconditional negative one cover
all natural numbers. Since both cases are entirely similar, it is enough to show
this for the case of the even predicate, where the positive pattern is evenpN`Nq
and the negative one is evenpM `M ` 1q. But this follows from the inductive
theorem: p@xq ppDnq x “ n`n _ pDmq x “ m`m` 1q, which has an easy proof
by induction on x.


