
On Formal Analysis of OO Languages using

Rewriting Logic: Designing for Performance ⋆

Mark Hills and Grigore Roşu

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

201 N Goodwin Ave, Urbana, IL 61801
{mhills, grosu}@cs.uiuc.edu

Abstract. Rewriting logic provides a powerful, flexible mechanism for
language definition and analysis. This flexibility in design can lead to
problems during analysis, as different designs for the same language fea-
ture can cause drastic differences in analysis performance. This paper
describes some of these design decisions in the context of KOOL, a con-
current, dynamic, object-oriented language. Also described is a general
mechanism used in KOOL to support model checking while still allowing
for ongoing, sometimes major, changes to the language definition.

keywords: object-oriented languages, programming language semantics,
analysis, model checking, rewriting logic

1 Introduction

With the increase in multi-core systems, concurrency is becoming a more impor-
tant topic in programming languages and formal methods research. Rewriting
logic [16, 15], an extension of equational logic with support for concurrency,
provides a computational logic for defining, reasoning about, and executing con-
current systems. While these can be fairly simple systems, entire programming
languages, such as object-oriented languages, can be defined as rewrite theories,
allowing tools designed to work with generic rewrite specifications to work with
the defined programming languages as well.

While there has been much work on analysis and verification techniques
with rewriting logic [18, 19, 6, 17], this work has mainly focused on laying the
theoretical foundations and on proofs of concept. Exceptions to this include
work on program verification for Java [7], Java bytecode in the JVM [8], and
CML [3], a concurrent extension to the ML programming language.

Even with these papers focused on real languages, very little information
is given on why certain design decisions were made. For the language designer
looking to define object-oriented languages using rewriting logic, this is a major
shortcoming. Since even small changes to a rewriting logic definition can have
major impacts on the ability to analyze programs, making appropriate decisions
when defining the language is vitally important. In addition, little information

⋆ Supported by NSF CCF-0448501 and NSF CNS-0509321.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

is available about specifically object-oriented definitions; while the work on Java
[7] obviously qualifies, the JVM operates at a much lower level, and the model
of computation used by CML, based around the strict functional language ML,
differs from that used by standard object-oriented languages.

In this paper, we have set out to fill this gap by providing information on in-
creasing the analysis performance of rewrite logic definitions for object-oriented
languages, specifically in the context of Maude [4, 5], a high-performance rewrit-
ing logic engine. We start in Section 2 by providing a brief introduction to rewrit-
ing logic, showing the relationship between rewriting logic and term rewriting
and explaining the crucial distinction between equations and rules. Section 3
then provides a brief introduction to KOOL, a concurrent, object-oriented lan-
guage that will be the focus of the experiments in this paper.

In Section 4, we highlight the search capabilities of Maude by showing some
examples of its use. Search provides a breadth-first search over a program’s state
space, providing an ability to search for program states matching certain con-
ditions (output of a certain value, safety condition violation) that, due to the
potentially infinite state space of the program, may not be possible with model
checking. Section 5 then discusses model checking of OO programs in rewriting
logic, using the classic dining philosophers problem. To improve the performance
of search and model checking, Section 6 discusses two potential performance im-
provements important in the context of object-oriented languages: auto-boxing
of scalar values for use in a pure object-oriented language, and optimizing mem-
ory access for analysis performance. Section 7 concludes the paper.

2 Rewriting Logic

This section provides a brief introduction to term rewriting and rewriting logic.
Term rewriting is a standard computational model supported by many systems;
rewriting logic [16, 15] organizes term rewriting modulo equations as a complete
logic and serves as a foundation for the semantics of programming languages
[19–21].

2.1 Term Rewriting

Term rewriting is a method of computation that works by progressively changing
(rewriting) a term. This rewriting process is defined by a number of rules –
potentially containing variables – which are each of the form: l → r. A rule can
apply to the entire term being rewritten or to a subterm of the term. First, a
match within the current term is found. This is done by finding a substitution, θ,
from variables to terms such that the left-hand side of the rule, l, matches part
or all of the current term when the variables in l are replaced according to the
substitution. The matched subterm is then replaced by the result of applying
the substitution to the right-hand side of the rule, r. Thus, the part of the
current term matching θ(l) is replaced by θ(r). The rewriting process continues
as long as it is possible to find a subterm, rule, and substitution such that θ(l)

3

matches the subterm. When no matching subterms are found, the rewriting
process terminates, with the final term being the result of the computation.
Rewriting can continue forever, a necessity for emulating computation.

There exist a plethora of term rewriting engines, including ASF [24], Elan [1],
Maude [4, 5], OBJ [9], Stratego [25], Tom [23, 14], and others. Rewriting is also a
fundamental part of existing languages and theorem provers. Term rewriting is
inherently parallel, since non-overlapping parts of a term can be rewritten at the
same time, and thus fits well with current trends in architecture and systems.

2.2 Rewriting Logic

Rewriting logic is a computational logic built upon equational logic which pro-
vides support for concurrency. In equational logic, a number of sorts (types) and
equations are defined. The equations specify which terms are considered to be
equal. All equal terms can then be seen as members of the same equivalence
class of terms, a concept similar to that from the λ calculus with equivalence
classes based on α and β equivalence. Rewriting logic provides rules in addition
to equations, used to transition between equivalence classes of terms. This allows
for concurrency, where different orders of evaluation could lead to non-equivalent
results, such as in the case of data races. The distinction between rules and equa-
tions is crucial for analysis, since terms which are equal according to equational
deduction can all be collapsed into the same analysis state. Rewriting logic is
connected to term rewriting in that all the equations and rules of rewriting logic,
of the form l = r and l ⇒ r, respectively, can be transformed into term rewriting
rules by orienting them properly (necessary because equations can be used for
deduction in either direction), transforming both into l → r. This provides a
means of taking a definition in rewriting logic and a term and ”executing” it.

In this paper we focus on the use of Maude [4, 5], a rewriting logic language
and engine. Beyond the ability to execute a program based on a rewriting logic
definition, Maude provides several capabilities which make it useful for defining
languages and performing formal analysis of programs. Maude allows commuta-
tive and associative operations with identities, allowing straight-forward defini-
tions of language features which make heavy use of sets and lists, such as sets
of classes and methods and lists of computational tasks. Maude’s support for
rewriting logic provides a natural way to model concurrency, with potentially
competing tasks (memory accesses, lock acquisition, etc) defined as rules. Also,
Maude provides built-in support for model checking and breadth-first state space
exploration, which will be explored further starting in Section 4.

3 KOOL

KOOL is a concurrent, dynamic, object-oriented language, loosely inspired by,
but not identical to, the Smalltalk language [10, 2]. KOOL includes support
for standard imperative features, such as assignment, conditionals, and loops

4

Program P ::= C
∗

E

Class C ::= class X is D
∗

M
∗ end | class X extends X

′ is D
∗

M
∗ end

Decl D ::= var {X,}+ ;

Method M ::= method X is D
∗

S end | method X ({X
′,}+) is D

∗
S end

Expression E ::= X | I | F | B | Ch | Str | (E) | new X | new X ({E,}+) |

self | E Xop E
′ | E.X(())? | E.X({E,}+) | super() |

super.X(())
?
| super.X({E,}

+
) | super({E,}

+
)

Statement S ::= E <- E
′; | begin D

∗
S end | if E then S else S

′ fi |

if E then S fi | try S catch X S end | throw E ; |

for X <- E to E
′

do S od | while E do S od | break; |

continue; | return; | return E; | S S
′ | E; | assert E; | X: |

typecase E of Cs
+ (else S)? end

Case Cs ::= case X of S

X ∈ Name, I ∈ Integer, F ∈ Float, B ∈ Boolean, Ch ∈ Char, Str ∈ String, Xop ∈ Operator Names

Fig. 1. KOOL Syntax

with break and continue. KOOL also includes support for many familiar object-
oriented features: all values are objects; all operations are carried out via mes-
sage sends; message sends use dynamic dispatch; single inheritance is used, with
a designated root class named Object; methods are all public, while fields are all
private outside of the owning object; and scoping is static, yet declaration order
for classes and methods is unimportant (all methods in a class see all other meth-
ods in the same class, for instance, and all classes see all other classes). KOOL

allows for the run-time inspection of object types via a typecase construct, and
includes support for exceptions with a standard try/catch mechanism.

3.1 KOOL Syntax

The syntax of KOOL is shown in Figure 1. The lexical definitions of literals
are not included in the figure to limit clutter, but are standard (for instance,
booleans include both true and false, strings are surrounded with double quotes
and characters with single quotes, etc). Single line and block comments are both
supported, using the same syntax as Java or C++, with the addition that block
comments can be nested. Message sends are specified in a Java-like syntax except
for methods named after operators, which are always binary and can be used
infix (such as a + b instead of a.+(b)). Because of this, very few operators are
predefined, and operators all have the same precedence and associativity. Sends
with no parameters do not require parens except for calls to parent constructors
which do not take parameters, which are of the form super(). Finally, semicolons
are used as statement terminators, not separators, and are only needed where
the end of a statement may be ambiguous – at the end of an assignment, for
instance, or at the end of each statement inside a branch of a conditional, but
not at the end of the conditional itself, which ends with fi.

5

class Factorial is

method Fact(n) is
if n = 0 then return 1;
else return n * self.Fact(n-1);

fi
end

end

console << (new Factorial).Fact(200)

Fig. 2. Recursive Factorial, KOOL

To get a feel for the language, a sam-
ple program is presented in Figure 2. A
new class Factorial is defined with a
method Fact that calculates the facto-
rial of the parameter n. After the class
definition is the main program expres-
sion, which creates a new object of class
Factorial, invokes method Fact with
the parameter 200, and then writes the
output to the predefined console object
using the output operation, << (borrowed

from C++). This operation invokes the toString method on its parameter and
returns itself as the method result, allowing chaining of output operations (such
as console << "Value = " << 3).

3.2 KOOL Semantics

The semantics of KOOL is defined using Maude equations and rules, with the
current program represented as a ”soup” of sometimes nested terms representing
the current computation, memory, the environment, locks held, etc. A visual
representation of this term, the state infrastructure, is shown in Figure 4; state
components needed specifically for concurrency are shaded.

eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’) .

eq val(primBool(true)) -> if(S,S’) = stmt(S) .
eq val(primBool(false)) -> if(S,S’) = stmt(S’) .

crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem)

if V := Mem[L] /\ V =/= undefined .

Fig. 3. Sample KOOL Rules

Figure 3 shows examples
of the equations and rules
which make up the KOOL

semantics. The first three
equations (represented with
eq) process a conditional in
the expected way: the first
computes the value of the
guard, saving the branches
for later use, while the sec-
ond and third execute the appropriate branch based on whether the guard was
true or false. The fourth, a conditional rule (represented with crl), represents
the lookup of a memory location. The rule states that, if the next computation
step in this thread is to look up the value at location L, and if that value is
V, and if V is not undefined (i.e. L is a properly defined location), the result of
the computation is the value V. CS and TS match the unreferenced parts of the
control and thread state, respectively.

We are continually extending the language, and are also using KOOL as
a basis for both teaching and research in language semantics, object-oriented
languages, analysis, and verification.

3.3 KOOL Implementation

There is an implementation of KOOL available at our website [12], as well as a
web-based interface to run and analyze KOOL programs such as those presented

6 ������� ������	�
�������� ����������������	� �����
��		���
����������� � ������������ ���������
����������� ������ ����

�	����������������
� �	���� �	���� �	����

������� ������������ ������� ��� ���		� �������������������
��	�����	

Fig. 4. KOOL State Infrastructure

here. There is also a companion technical report [11] that explains the syntax
and semantics in detail.

KOOL programs are generally run using the runkool.sh script. Flags ac-
cepted include -s to perform a search and -t to search for a specific value. For
model checking, the mckool.sh script is used instead of runkool.sh for sim-
ple runs, while mccust.sh is used for model checking runs that require custom
Maude files. Flags accepted include -m to run the model checker in assertion-
checking mode and -c to pass a custom model-checking formula. These three
scripts will be combined in the near future. A KOOL program is first parsed using
SDF [24] and a custom C program, translating from KOOL syntax into a form
more easily handled by Maude and including any necessary headers and foot-
ers (to indicate a search execution instead of a normal execution, for instance).
Maude then executes this generated text, writing the result to the console.

4 Breadth-first Search in KOOL

class ThreadGame is
var x;

method ThreadGame is

x <- 1;
end

method Add is
while true do x <- x + x; od

end

method Run is
spawn(self.Add); spawn(self.Add);
console << x;

end
end

(new ThreadGame).Run

Fig. 5. Thread Game, KOOL

The thread game is a concurrency problem
defined as follows: take a single variable, say
x, initialized to 1. In two threads, repeat the
assignment x <- x + x forever. In another
thread, output the value of x. What values
is it possible to output? As has been proved
[22], it is possible to output any natural num-
ber ≥ 1. A KOOL version of the thread game
is shown in Figure 5.

To check to see if a specific value can be
output, one could run the program. Given
enough runs, the value of interest may be gen-
erated, but this is highly inefficient. Model
checking will not help here either, since this

7

is an infinite state system, and the value may not be along the first (depth-first)
search path chosen. Maude’s search capability can be used, though, either to
enumerate possible values (obviously not all possible values here) or to search
for a specific value. For instance, searching for 10 yields a result, indicating that
10 is one of the possible values; a sample run showing this is shown in Figure 6.

./runkool.sh examples/ThreadGame.kool -t 10

... term omitted ...
Solution 1 (state 2294)

states: 3381 rewrites: 310427 in 14388ms cpu
SL:[StringList] --> "10"

Fig. 6. Thread Game Sample Run

Another example of the useful-
ness of search is illustrated by the
program in Figure 7. This program
is finite state, so all possible results
can be enumerated. When search is
used here, requesting all possible fi-
nal results, three are returned: both
100 and 200 can be output, and an
assertion can be thrown if the thread

running Changer sets the value to 200 between the time the value is set to 100
and the time the next line, with the assert statement, is executed.

class WrappedInt is
var wval;

method WrappedInt(n) is

wval <- n;
end

method setWVal(n) is
wval <- n;

end

method toString is
return wval.toString();

end

method =(n) is

return wval = n;
end

end

class Changer is
method Run(n) is

n.setWVal(200);
end

end

class Main is
method Run is

var x;

x <- new WrappedInt(5);
spawn ((new Changer).Run(x));

x.setWVal(100);
assert(x = 100);

console << x;
end

end

./runkool.sh examples/Spawn7.kool -s

... term omitted ...
Solution 1 (state 1964)

states: 2147 rewrites: 93343 in 6112ms cpu (6110ms real) (15271 rewrites/second)
SL:[StringList] --> "100"

Solution 2 (state 2430)
states: 2441 rewrites: 100482 in 6748ms cpu (6748ms real) (14889 rewrites/second)

SL:[StringList] --> "200"

Solution 3 (state 2490)
states: 2491 rewrites: 101721 in 6852ms cpu (6852ms real) (14844 rewrites/second)
SL:[StringList] --> "AssertException thrown: Assertion triggered"

Fig. 7. Assertions, KOOL

8

5 Model Checking KOOL

A canonical example for concurrency is the Dining Philosophers problem. A
simple version of this problem, with just two philosophers, is shown written in
KOOL in Figure 8. In KOOL, locks can be acquired on any object. Here we
create a Fork class with no methods or properties; we can create objects of
this class and then acquire locks on the objects, representing taking a fork. The
Philosopher class just contains a single method, Run, which enters an infinite
loop that cycles through two states: hungry (wants to acquire forks) and eating
(has acquired forks). Once a philosopher eats, it releases the locks, putting down
the forks. The Main class also contains a Run method; this method creates the
necessary forks and philosophers, and then uses the spawn statement to run each
philosopher in its own thread.

class Fork is

end

class Philosopher is
method Run(id,left,right) is

while (true) do
hungry:
acquire left;

acquire right;

eating:
skip;
release left;

release right;
od

end
end

class Main is

var l1, l2;
var p1, p2;

method Run is

l1 <- new Fork;
l2 <- new Fork;

p1 <- new Philosopher;
p2 <- new Philosopher;

spawn(p1.Run(1,l1,l2));
spawn(p2.Run(2,l2,l1));

end
end

(new Main).Run

Fig. 8. Dining Philosophers

We would like to determine if this program can deadlock. Using Maude’s
model checking capabilities, we can write properties over the program state
which can then be used in LTL formulae. For instance, we could create a prop-
erty named deadlocked, and then write a formula like ”[]∽deadlocked” (it’s
always the case that we are not deadlocked). A problem with this is that the
program state is very complex; it contains all current class definitions, runtime
information for each thread, global information for the program (such as mem-
ory), and other bookkeeping information. It isn’t always obvious how to properly
write a property using this information. Here, for instance, we would need to de-
tect when we are trying to acquire a fork, and say that when we start trying to
acquire forks we always are able to acquire both, allowing the philosopher to eat.
Another problem is that, if we change the state definition as we are modifying
the language design, we risk having to change defined properties to match the
new state, breaking the modularity of language definitions.

A solution that resolves these problems is to use label statements, shown in
Figure 8 as identifiers followed by a colon (such as hungry: or eating:) to assist

9

in model checking. This idea is used by other model checkers as well – SPIN [13],
for instance, also uses labels. The language semantics then include a rule (not an
equation, since this takes us into a non-equivalent state which should be detected
during verification) which sets a component of the thread state to the value of the
label when the label is encountered. This allows properties to be stated directly
in terms of the labels – here, for instance, freedom from deadlock means that
upon reaching the hungry label it is always the case that the thread eventually
reaches the eating label. This requires much less detailed knowledge about the
state, since only label names, included in the program source, need to be known.
It also insulates model checking from state changes, as long as the part of the
state dealing with labels is not modified. The tradeoff is a potential degradation
of performance, since the label semantics are defined in terms of rules, and rule
application adds additional states to the state space. In cases where additional
performance is needed, it is still possible to write predicates directly against the
state, avoiding the use of labels. Again, though, these predicates may be quite
complicated, and may require ongoing maintenance as the language evolves.

Using this notion of progress for deadlock freedom, the appropriate LTL
formula for the two philosopher problem is then:

progress(2,hungry,eating)∨progress(3,hungry,eating)

where 2 and 3 are the thread IDs and progress(n,l1,l2) means that thread n

eventually reaches l2 whenever it reaches l1. Thread IDs are needed since LTL
lacks quantification – i.e. there is no way to say that, ∀n,progress(n,l1,l2).
The thread running first has ID 1, and each spawn adds 1 to this.

while true do

hungry:
if (id % 2 = 0) then

acquire left;
acquire right;

else

acquire right;
acquire left;

fi

eating:
skip;
release left;

release right;
od

Fig. 9. Dining Philoso-
phers, Deadlock-Free

Running the model checker with this program and
formula, we will get a counterexample, since it is in
fact possible to deadlock (when the first philosopher
grabs the first fork and the second grabs the second).
Times for the model checker to find counterexam-
ples, by philosopher count, are given in Figure 13. A
fix to the code in the Philosopher class Run method
is shown in Figure 9, with ”odd” philosophers tak-
ing the forks in one order and ”even” philosophers
in the other. Unfortunately, due to the initial lan-
guage design, which focused more on executability
and less on verification, it is not possible to verify
this fix with the model checker – it will run for a
time and then crash. This will be addressed in Sec-
tion 6, where modifications to the design to improve
verification performance will be explored. A sample
run, after these modifications are in place, is shown

for 2 philosophers, using the deadlock-free version of the code, in Figure 10.
Here, mccust allows a custom model-checking script to be run, in this case one
that defines someWillEat, and -c allows the LTL property to be specified. The
result, true, means that the property holds.

10

./mccust.sh examples/DP2-nodeadlock.kool mcdp.maude -c "someWillEat(2,3)"

... term omitted ...
result Bool: true

Fig. 10. Model Checking Sample Run

6 Tuning the Model

The ability to model check and search programs using language definitions in
rewriting logic is very closely tied to the performance of the definition. There
are two general classes of performance improvement: improvements that impact
execution speed, and improvements that impact analysis speed, which may even
slightly reduce typical execution speed. Two examples of improvements are pre-
sented here. First, auto-boxing is introduced to the language. This allows opera-
tions on scalar types, which are represented in KOOL as objects, to be performed
directly on the underlying values for many operations (standard arithmetic op-
erations, for instance), while still allowing method calls to be used on an object
representation of the scalar where needed. Second, memory is segregated into
two pools, a shared and an unshared pool. Rules are used when accessing or
modifying memory in the shared pool, since these changes could lead to data
races, while equations are used for equivalent operations on the unshared pool.
This follows the intuition that changes to unshared memory locations in a thread
cannot cause races. This change may or may not improve execution performance,
but has a dramatic impact on analysis performance.

6.1 Auto-boxing

In KOOL, all values, including those typically represented as scalars in languages
like Java, are objects. This means that a number like 5 is represented as an ob-
ject, and an expression like 5 + 7 is represented as a method call. Primitive
operations are defined which extract the primitive values ”hidden” in the ob-
jects (i.e. the actual number 5, versus the object that represents it), perform
the operation on these primitive values, and create a new object representing
the result. This provides a ”pure” object-oriented model, but requires additional
overhead, including additional accesses to memory to retrieve the primitive val-
ues and create the new object for the result. Since memory accesses are modeled
as rules in the definition, this also increases model checking and search time by
increasing the number of states that need to be checked.

To improve performance, auto-boxing can be added to KOOL. This allows
values such as 5 to be represented as scalars – i.e. directly as the primitive
values. A number of operations can then be performed directly on the primi-
tive representation, without having to go through the additional steps described
above. For numbers, this includes arithmetic and logical operations, which are
some of the most common operations applied to these values. Operations which
cannot be performed directly can still be treated as message sends; the scalar
value is automatically converted to an object representing the same value, which
can then act as a message target to handle the method. Since boxing can occur

11

automatically, by default values, including those generated as the result of prim-
itive operations, are left un-boxed – in scalar form. This all happens behind the
scenes, allowing KOOL programs to remain unchanged.

An example of the rule changes to enable auto-boxing are found in Figure 11.
The first equation is without auto-boxing. Here, when a floating point number is
encountered, a new floating point object of class Float is automatically created,
with the value then ”hidden” inside it. In the second equation, this value is
instead wrapped inside a value wrapper – no new object is created. The next
equation shows an example of an intercepted method call – invoking + with
two float values will cause the built-in float + operation to be used, instead of
requiring a method call to process the request. In the last equation, the boxing
step is shown – here, a method outside of those handled directly on scalars has
been called with the floating-point number as the target, in which case a new
object will be created just like in the first equation ([owise] will ensure that
we will try this as a last resort). The blockWList operation is used to hold the
other values until the Float object is created, at which point they can be used in
the invocation (the necessity for this is based on the structure of the definition,
not on the fact that the floating point number is boxed).

Auto-boxing has a significant impact on performance. Figure 13 shows the
updated figures for verification times with this change in place. Not only is this
faster than the solution without auto-boxing in all cases, but it is now also
possible to verify deadlock freedom for up to 5 philosophers, which was not
possible with the prior definition.

eq k(exp(f(F)) -> K) = k(exp(new Float(empty)) -> storePrim(primFloat(F)) -> K) .

eq k(exp(f(F)) -> K) = k(val(fv(F)) -> K) .
eq k(val(fv(F),fv(F’)) -> toInvoke(n(’+)) -> K) = k(val(fv(F + F’)) -> K) .
eq k(val(fv(F),Vl) -> toInvoke(Xm) -> K) =

k(newPrimFloat(primFloat(F)) -> blockWList(Vl) -> toInvoke(Xm) -> K) [owise] .

Fig. 11. Example Definition Changes, Auto-boxing

6.2 Memory Pools

Memory in the KOOL definition is represented using a single global store for
an entire program. This is fairly efficient for normal execution, but for model
checking and search this can be more expensive than needed. This is because all
interaction with the store must use rules, since multiple threads could compete
to access the same memory location at the same time. However, many memory
accesses don’t compete – for instance, when a new thread is started by spawning
a method call, the method’s instance variables are only seen by this new thread,
not by the thread that spawned it. What is needed, then, is a modification to the
definition that will allow rules to be used where they are needed – for memory
accesses that could compete – while allowing equations to be used for the rest.

12

To do this, memory in KOOL can be split into two pools: a shared memory
pool, containing all memory accessible by more than one thread at some point
during execution, and a non-shared memory pool, containing memory that is
known to be accessed by at most one thread. To add this to the definition, an
additional global state component is added to represent the shared memory pool,
and the appropriate rules are modified to perform memory operations against
the proper memory pool. Properly moving memory locations between the pools
does require care, however, since accidentally leaving memory in the non-shared
pool could cause errors during verification.

The strategy we take here is a conservative one: any memory location that
could be accessed by more than one thread, regardless of whether this actually

happens during execution, will be moved into the shared pool. There are two
scenarios to consider. In the first, the spawn statement executes a message send.
In this scenario, locations accessible through the message target (an object), as
well as locations accessible through the actual parameters of the call, are all
moved into the shared pool. Note that accessible here is transitive – an object
passed as a parameter may contain references to other objects, all of which
could be reached through the containing object. In many cases this will be more
conservative than necessary; however, there are many situations, such as multiple
spawns of message sends on the same object, and spawns of message sends on
self, where this will be needed.

The second scenario is where the spawn statement is used to spawn a new
thread containing an arbitrary expression. Here, all locations accessible in the
current environment need to be moved to the shared pool. This includes all
locations accessible in the currently executing method, including locations for
instance variables, as well as any accessible through self. This covers all cases,
including those with message sends embedded in larger expressions (since the
target is in scope, either directly or through another object reference, it will be
moved to the shared pool).

This strategy leads to a specific style of programming that should improve
verification performance: message sends should be spawned, not arbitrary ex-
pressions, and needed information should be passed in the spawn statement to
the target, instead of set through setters or in the constructor. This is because
the object-level member variables will be shared, while instance variables and
formal parameters will not. This brings up a subtle but important distinction –
the objects referenced by the formal parameters will be shared, but not the refer-
ences, which are local to the method, meaning that no verification performance
penalty is paid until the code needs to ”look inside” the referenced object. Look-
ing inside does not include retrieving the object to use it in a lock acquisition
statement (acquisition itself is a rule).

Figure 12 shows one of the two rules changed to support the memory pools
(the other, for assignment, is similar), as well as part of the location reassignment
logic. The first rule, which is the original lookup rule, retrieves a value V from
a location L in memory Mem. The location must exist, which accounts for the
condition – if L does not exist, looking up the current value with Mem[L] will

13

crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem) if V := Mem[L] /\ V =/= undefined .

--

ceq t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =
t(control(k(val(V) -> K) CS) TS) mem(Mem) if V := Mem[L] /\ V =/= undefined .

crl t(control(k(llookup(L) -> K) CS) TS) smem(Mem) =>

t(control(k(val(V) -> K) CS) TS) smem(Mem) if V := Mem[L] /\ V =/= undefined .

ceq t(control(k(reassign(L,Ll) -> K) CS) TS) mem(Mem) smem(SMem) =

t(control(k(reassign(Ll,Ll’) -> K) CS) TS) mem(unset(Mem,L)) smem(SMem[L <- V])
if V := Mem[L] /\ V =/= undefined /\ Ll’ := valLocs(V) .

ceq t(control(k(reassign(L,Ll) -> K) CS) TS) mem(Mem) smem(SMem) =

t(control(k(reassign(Ll) -> K) CS) TS) mem(Mem) smem(SMem)
if V := SMem[L] /\ V =/= undefined .

eq k(reassign(empty) -> K) = k(K) .

Fig. 12. Example Definition Changes, Memory Pools

return undefined. CS and TS match the rest of the control and thread states,
respectively. The second and third equation and rule replace this first to support
the shared and unshared memory pools. The second is now an equation, since the
memory under consideration is not shared. The third is a rule, since the memory
is shared. This shared pool is represented with a new part of the state, smem.
The last three equations represent the reassignment of memory locations from
the unshared to the shared pool, triggered on thread creation and assignment
to shared memory locations. In the first, the location and value are moved to
the shared pool, as well as all locations reachable through the value V – none
for scalars, but all directly reachable inside an object for non-scalars. As these
locations are processed, locations reachable through the values at those locations
will also be added. The second represents the case where the location is already
shared – in this case, we just move on to the next location. The third just ends
the recursive process. Even with circular data structures (i.e. objects which holds
references to one another) this will terminate, since locations reachable through
an object are only added when the location for that object is initially shared.

This strategy could be improved with additional bookkeeping. As can be seen
in the reassignment rules, there is currently no tracking of which threads share
which location, which means that once a location is shared it never becomes
unshared. Tracking this information could potentially allow a finer-grained shar-
ing mechanism as well, versus the fairly course sharing mechanism in place now.
However, even with this mechanism, we still see some significant improvements
in verification performance. These can be seen in Figure 13. Note that, in every
case, adding the shared pool increases performance, in many cases dramatically.
It also allows additional verification – checking for a counterexample works for
8 philosophers, and verifying deadlock freedom in the fixed solution can be done
for up to 7 philosophers.

14

Ph No Optimizations Auto-boxing Auto-boxing + Memory Pools

States Counter DeadFree States Counter DeadFree States Counter DeadFree

2 61 0.645 NA 35 0.64 0.798 7 0.621 0.670

3 1747 0.723 NA 244 0.694 3.610 30 0.637 1.287

4 47737 1.132 NA 1857 1.074 40.279 137 0.782 5.659

5 NA 6.036 NA 14378 4.975 501.749 634 1.629 34.415

6 NA 68.332 NA 111679 49.076 NA 2943 7.395 218.837

7 NA 895.366 NA 867888 555.791 NA 13670 47.428 1478.747

8 NA NA NA NA NA NA 63505 325.151 NA
Single 3.40 GHz Pentium 4, 2 GB RAM, OpenSuSE 10.1, kernel 2.6.16.27-0.6-smp, Maude 2.2.

Times in seconds, Ph is philosopher count, Counter is time to generate counter-example, DeadFree

is time to verify the program is deadlock free, state count based on Maude search results, NA

means the process either crashed or was abandoned after consuming most system memory.

Fig. 13. Dining Philosophers Verification Time

7 Conclusions and Future Work

In this paper we have shown how rewriting logic can be used for verification and
analysis of a non-trivial concurrent object-oriented language. We have also shown
ways in which run-time and verification performance can be improved, in this
case by adding auto-boxing of scalar values in a pure object-oriented language
and by segregating accesses of shared and non-shared memory locations. We
believe the ideas presented here can be used during the design of other rewriting
logic definitions of object-oriented languages as a means to improve performance.

There is much future work in this area, some of which was touched on in
the paper. Better methods of sharing and un-sharing memory would help in the
analysis of longer running programs, and could potentially be used for other
purposes as well, such as in the analysis of garbage collection schemes. Also,
while we achieve a reduction in the state space by the use of equations to collapse
equivalent states, work on techniques like partial order reduction in the context
of rewriting logic specifications would help to improve performance further.

References

1. P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An
overview of ELAN. ENTCS, 15, 1998.

2. Byte. Issue on Smalltalk. Byte Magazine, 6(8), August 1981.

3. F. Chalub and C. Braga. A Modular Rewriting Semantics for CML. In Proceedings

of the 8th. Brazilian Symposium on Programming Languages, May 2004.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-

puter Science, 285:187–243, 2002.

15

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 System. In Proceedings of RTA’03, volume 2706, pages 76–87.
Springer LNCS, 2003.

6. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL Model Checker.
In F. Gadducci and U. Montanari, editors, Proc. 4th. Intl. Workshop on Rewriting

Logic and its Applications, volume 71 of ENTCS. Elsevier, 2002.
7. A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal analysis of Java programs

in JavaFAN. In Proceedings of CAV’04, volume 3114 of LNCS, pages 501–505.
Springer, 2004.

8. A. Farzan, J. Meseguer, and G. Roşu. Formal JVM code analysis in JavaFAN. In
Proceedings of AMAST’04, volume 3116 of LNCS, pages 132–147, 2004.

9. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ: algebraic specification in action.
Kluwer, 2000.

10. A. Goldberg and D. Robson. Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

11. M. Hills and G. Roşu. KOOL: A K-based Object-Oriented Language. Technical
Report UIUCDCS-R-2006-2779, University of Illinois at Urbana-Champaign, 2006.

12. M. Hills and G. Rosu. KOOL Language Homepage. http://fsl.cs.uiuc.edu/KOOL.
13. G. J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–

295, 1997.
14. C. Kirchner, P.-E. Moreau, and A. Reilles. Formal validation of pattern matching

code. In Proceedings of PPDP’05, pages 187–197. ACM Press, 2005.
15. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography. The-

oretical Computer Science, 285:121–154, 2002.
16. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-

retical Computer Science, 96(1):73–155, 1992.
17. J. Meseguer. Software specification and verification in rewriting logic. In M. Broy

and M. Pizka, editors, Models, Algebras, and Logic of Engineering Software, Mark-

toberdorf, Germany, July 30 – August 11, 2002, pages 133–193. IOS Press, 2003.
18. J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstractions. in Proc.

CADE-19, Springer LNCS, Vol. 2741, 2–16, 2003.
19. J. Meseguer and G. Roşu. Rewriting Logic Semantics: From Language Specifica-

tions to Formal Analysis Tools . In Proceedings of IJCAR’04, pages 1–44. Springer
LNAI 3097, 2004.

20. J. Meseguer and G. Roşu. The rewriting logic semantics project. Theoretical

Computer Science, to appear, 2006.
21. J. Meseguer and G. Roşu. The rewriting logic semantics project. In Proceedings

of SOS’05, volume 156 of ENTCS, pages 27–56. Elsevier, 2006.
22. J. S. Moore. http://www.cs.utexas.edu/users/moore/publications/thread-

game.html.
23. P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern matching compiler for

multiple target languages. In Proceedings of CC’03, volume 2622 of LNCS, pages
61–76. Springer, 2003.

24. M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling language
definitions: the ASF+SDF compiler. ACM TOPLAS, 24(4):334–368, 2002.

25. E. Visser. Program Transf. with Stratego/XT: Rules, Strategies, Tools, and Sys-
tems. In Domain-Specific Program Generation, pages 216–238, 2003.

16

A KOOL Language Definition

This appendix contains information on the definition of KOOL. Here we show
mainly the changes from the prior published definition of KOOL, available in a
companion technical report [11].

A.1 SDF Parser Definition

The SDF parser now includes an Assert module for runtime assertions. Labels
are defined in the Stmt module, with constructor LabelStmt. The Main module
is extended to include the Assert module.

module Assert

imports Stmt Exp
exports

context-free syntax
"assert" Exp ";" -> Stmt { cons("Assert") }

lexical syntax

"assert" -> Name { reject }

module Stmt
imports Name Exp

exports
sorts Stmt
context-free syntax

Exp ";" -> Stmt { cons("StmtExp") }
"skip" ";" -> Stmt { cons("Skip") }

Name ":" -> Stmt { cons("LabelStmt") }
lexical syntax

"skip" -> Name { reject }

module Main

imports Program Class Block SeqComp Assignment Conditional Loop
Self Super Send New Number Exception TypeCase Bool Char

String Comments Threads Prim Assert

A.2 Rewriting Logic Semantics

Changes shown below are modules either added or modified to support assertions
(not in the already-available language definition, and just mentioned in passing
in this paper), labels, auto-boxing, and memory pools.

Added Syntax The ASSERT-SYNTAX module adds the syntax for assertions,
while MAIN-SYNTAX is extended to include this module.

fmod ASSERT-SYNTAX is

including STMT-SYNTAX .
including EXP-SYNTAX .

op assert_; : Exp -> Stmt .
op label : Name -> Stmt .

endfm

fmod MAIN-SYNTAX is
including PROGRAM-SYNTAX .
including CLASS-SYNTAX .

17

including BLOCK-SYNTAX .

including SEQUENCE-SYNTAX .
including ASSIGNMENT-SYNTAX .

including CONDITIONAL-SYNTAX .
including LOOP-SYNTAX .
including SELF-SYNTAX .

including SUPER-SYNTAX .
including SEND-SYNTAX .

including NEW-SYNTAX .
including SCALARS-SYNTAX .
including EXCEPTION-SYNTAX .

including TYPECASE-SYNTAX .
including PRIMITIVES-SYNTAX .

including CONCURRENCY-SYNTAX .
including ASSERT-SYNTAX .

endfm

State Changes The STATE module has been extended to include additional
details needed in the thread state, mainly the current thread label, as well as
the additional, shared memory pool smem.

fmod STATE is

including CONTINUATION .
including VALUE .

including LOCATION .
including ENVIRONMENT .
including STORE .

including METHOD .
including CLASS .

including OBJ-ENVIRONMENT .
including OBJECT .

including STRING-LIST .
including LOCK .

sorts KState KStateList .
subsort KState < KStateList .

op empty : -> KState .
op __ : KState KState -> KState [assoc comm id: empty] .

op empty : -> KStateList .

op _,_ : KStateList KStateList -> KStateList [assoc id: empty] .

sorts MStackTuple MStackTupleList .
subsort MStackTuple < MStackTupleList .
op empty : -> MStackTupleList .

op _,_ : MStackTupleList MStackTupleList -> MStackTupleList [assoc id: empty] .
op [_,_,_,_,_] : Continuation KState Env Object Name -> MStackTuple .

sorts EStackTuple EStackTupleList .

subsort EStackTuple < EStackTupleList .
op empty : -> EStackTupleList .
op _,_ : EStackTupleList EStackTupleList -> EStackTupleList [assoc id: empty] .

op [_,_,_,_,_,_] : Continuation KState Env Object Name Continuation -> EStackTuple .

sorts LStackTuple LStackTupleList .
subsort LStackTuple < LStackTupleList .
op empty : -> LStackTupleList .

op _,_ : LStackTupleList LStackTupleList -> LStackTupleList [assoc id: empty] .
op [_,_,_,_] : Continuation KState Env Continuation -> LStackTuple .

*** Control state components (nested in thread)

op control : KState -> KState [format (b! o)] .
op k : Continuation -> KState [format (y! o)] .
op mstack : MStackTupleList -> KState [format (mu! o)] .

18

op estack : EStackTupleList -> KState [format (mu! o)] .

op lstack : LStackTupleList -> KState [format (mu! o)] .

*** Thread state components (nested in top-level)
op t : KState -> KState [format (r! o)] .
op env : Env -> KState [format (r! o)] .

op cobj : Object -> KState [format (r! o)] .
op cclass : Name -> KState [format (r! o)] .

op holds : LockTupleSet -> KState [format (r! o)] .
op tid : Nat -> KState [format (r! o)] .
op lbl : Name -> KState [format (r! o)] .

op io : KState -> KState [format (r! o)] .

op input : StringList -> KState [format (r! o)] .
op output : StringList -> KState [format (r! o)] .

op counters : KState -> KState [format (r! o)] .
op nextOid : Nat -> KState [format (r! o)] .

op nextTid : Nat -> KState [format (r! o)] .
op nextLoc : Nat -> KState [format (r! o)] .

op tc : Nat -> KState [format (r! o)] .

*** Top-level state components
op cset : ClassSet -> KState [format (r! o)] .
op mem : Store -> KState [format (r! o)] .

op smem : Store -> KState [format (r! o)] .
op busy : LockSet -> KState [format (r! o)] .

op threads : KState -> KState [format (r! o)] .
op aflag : Bool -> KState [format (r! o)] .

*** Placeholder for the starter environment

op baseenv : -> Env .

endfm

Memory Operations The MEMORY-OPSmodule is new, and isolates all memory
operations. This has changed to support shared memory, with the addition of
operations on the shared memory pool and logic to reassign locations from one
pool to the other. Many operations here were removed from another module, the
text of which is not shown here.

mod MEMORY-OPS is
including STATE .

vars X Xc Xc’ : Name . var Xl : Names . vars K K’ : Continuation . vars N N’ : Nat .

vars CS CS’ cns : KState . vars V V’ : Value . var Vl : ValueList . vars Env Env’ : Env .
vars Mem SMem : Store . var L : Location . vars SL SL’ : KStateList .

vars O O’ : Object . vars C C’ : IClass . vars Ll Ll’ : LocationList .
var CI : ClassItem . var Cs : ClassSet . var OE : ObjEnv .
var TS TS’ ts : KState .

op lassign : Location -> Continuation .

ceq t(control(k(val(V) -> lassign(L) -> K) CS) TS) mem(Mem) =
t(control(k(K) CS) TS) mem(Mem[L <- V])

if Mem[L] =/= undefined .

ceq t(control(k(val(V) -> lassign(L) -> K) CS) TS) smem(Mem) =

t(control(k(reassign(valLocs(V)) -> sstore(L,V) -> K) CS) TS) smem(Mem)
if Mem[L] =/= undefined .

op sstore : Location Value -> Continuation .
rl t(control(k(sstore(L,V) -> K) CS) TS) smem(Mem) =>

19

t(control(k(K) CS) TS) smem(Mem[L <- V]) .

crl t(control(k(val(V) -> lassign(L) -> K) CS) TS) smem(Mem) =>

t(control(k(reassign(valLocs(V)) -> K) CS) TS) smem(Mem[L <- V])
if Mem[L] =/= undefined .

op llookup : Location -> Continuation .
ceq t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =

t(control(k(val(V) -> K) CS) TS) mem(Mem)
if V := Mem[L] /\ V =/= undefined .

crl t(control(k(llookup(L) -> K) CS) TS) smem(Mem) =>
t(control(k(val(V) -> K) CS) TS) smem(Mem)

if V := Mem[L] /\ V =/= undefined .

op reassign : LocationList -> Continuation .

*** If L represents a location of a value in non-shared memory,
*** move it over to shared memory and also move over any reachable

*** values.

ceq t(control(k(reassign(L,Ll) -> K) CS) TS) mem(Mem) smem(SMem) =
t(control(k(reassign(Ll,Ll’) -> K) CS) TS) mem(unset(Mem,L)) smem(SMem[L <- V])

if V := Mem[L] /\ V =/= undefined /\ Ll’ := valLocs(V) .

*** If L represents a location of a value in shared memory,
*** ignore it -- there is no need to move it over, as it is already
*** shared.

ceq t(control(k(reassign(L,Ll) -> K) CS) TS) mem(Mem) smem(SMem) =

t(control(k(reassign(Ll) -> K) CS) TS) mem(Mem) smem(SMem)
if V := SMem[L] /\ V =/= undefined .

*** Inductive halt condition for reassignment

eq k(reassign(empty) -> K) = k(K) .

op bind : Names -> Continuation .
ceq t(control(k(val(Vl) -> bind(Xl) -> K) CS) env(Env) TS) mem(Mem) counters(nextLoc(N) cns) =

t(control(k(K) CS) env(Env[Xl <- Ll]) TS) mem(Mem[Ll <- Vl]) counters(nextLoc(N + N’) cns)
if N’ := len(Xl) /\ Ll := locs(N,N’) .

ceq t(control(k(bind(Xl) -> K) CS) env(Env) TS) mem(Mem) counters(nextLoc(N) cns) =

t(control(k(K) CS) env(Env[Xl <- Ll]) TS) mem(Mem[Ll <*- nil]) counters(nextLoc(N + N’) cns)
if N’ := len(Xl) /\ Ll := locs(N,N’) .

op valLocs : ValueList -> LocationList .
eq valLocs(o(oenv(OE) O),Vl) = oenvLocs(OE), valLocs(Vl) .

eq valLocs(V,Vl) = empty, valLocs(Vl) [owise] .
eq valLocs(empty) = empty .

op oenvLocs : ObjEnv -> LocationList .
eq oenvLocs([X,Env] OE) = envLocs(Env), oenvLocs(OE) .

eq oenvLocs(empty) = empty .

op envLocs : Env -> LocationList .
eq envLocs(_‘,_(Env, X |-> L)) = L, envLocs(Env) .
eq envLocs(empty) = empty .

endm

Send Semantics Changes The SEND-SEMANTICS module has been modified
to account for auto-boxing. Method calls that can work without boxing are

20

intercepted, with operations working on the primitive values directly. Sends that
must have an object target are boxed.

mod SEND-SEMANTICS is
including STATE-HELPERS .
including EXP-SEMANTICS .

including STMT-SEMANTICS .
including SEND-SYNTAX .

including EXCEPTION-SYNTAX .
including NEW-SYNTAX .

including PRIM-BASIC .

vars Xm Xc Xc’ : Name . vars K Km : Continuation .

vars Xs Xs’ : Names . vars Dl Dl’ : DeclList .
vars Ds Ds’ : DeclSet .

var E : Exp . var Es : Exps . var Vl : ValueList .
var CS : KState . var CI : ClassItem . var Cs : ClassSet .
vars O O’ : Object . var Env : Env . var IC : IClass .

var Ms : MethodSet . var TS : KState . var Mi : MethodItem .

*** First, evaluate the call target (which should evaluate to an

*** object) and the parameters (which can be empty).
op toInvoke : Name -> ContinuationItem .
op toInvokeAndWrap : Name -> ContinuationItem .

eq exp(E . Xm (Es)) = exp(E,Es) -> toInvoke(Xm) .

*** 12/18/2006 MAH
*** Put in the "hook" here to capture scalar calls and treat them

*** differently than non-scalar calls. This allows us to keep the
*** same form for all calls and allows us to use the same operators

*** for scalars and non-scalars (like + for integer addition and
*** string concatenation).

vars I I’ : Int . vars F F’ : Float . vars B B’ : Bool . var V : Value .

eq k(val(iv(I),iv(I’)) -> toInvoke(n(’+)) -> K) = k(val(iv(I + I’)) -> K) .

eq k(val(iv(I),iv(I’)) -> toInvoke(n(’-)) -> K) = k(val(iv(I - I’)) -> K) .
eq k(val(iv(I),iv(I’)) -> toInvoke(n(’*)) -> K) = k(val(iv(I * I’)) -> K) .
eq k(val(iv(I),iv(I’)) -> toInvoke(n(’/)) -> K) = k(val(iv(I quo I’)) -> K) .

eq k(val(iv(I),iv(I’)) -> toInvoke(n(’%)) -> K) = k(val(iv(I rem I’)) -> K) .

eq k(val(iv(I),fv(F’)) -> toInvoke(n(’+)) -> K) = k(val(fv(float(I) + F’)) -> K) .
eq k(val(iv(I),fv(F’)) -> toInvoke(n(’-)) -> K) = k(val(fv(float(I) - F’)) -> K) .

eq k(val(iv(I),fv(F’)) -> toInvoke(n(’*)) -> K) = k(val(fv(float(I) * F’)) -> K) .
eq k(val(iv(I),fv(F’)) -> toInvoke(n(’/)) -> K) = k(val(fv(float(I) / F’)) -> K) .

eq k(val(fv(F),iv(I’)) -> toInvoke(n(’+)) -> K) = k(val(fv(F + float(I’))) -> K) .
eq k(val(fv(F),iv(I’)) -> toInvoke(n(’-)) -> K) = k(val(fv(F - float(I’))) -> K) .

eq k(val(fv(F),iv(I’)) -> toInvoke(n(’*)) -> K) = k(val(fv(F * float(I’))) -> K) .
eq k(val(fv(F),iv(I’)) -> toInvoke(n(’/)) -> K) = k(val(fv(F / float(I’))) -> K) .

eq k(val(fv(F),fv(F’)) -> toInvoke(n(’+)) -> K) = k(val(fv(F + F’)) -> K) .
eq k(val(fv(F),fv(F’)) -> toInvoke(n(’-)) -> K) = k(val(fv(F - F’)) -> K) .

eq k(val(fv(F),fv(F’)) -> toInvoke(n(’*)) -> K) = k(val(fv(F * F’)) -> K) .
eq k(val(fv(F),fv(F’)) -> toInvoke(n(’/)) -> K) = k(val(fv(F / F’)) -> K) .

eq k(val(iv(I),iv(I’)) -> toInvoke(n(’<)) -> K) = k(val(bv(I < I’)) -> K) .
eq k(val(iv(I),iv(I’)) -> toInvoke(n(’<=)) -> K) = k(val(bv(I <= I’)) -> K) .

eq k(val(iv(I),iv(I’)) -> toInvoke(n(’>)) -> K) = k(val(bv(I > I’)) -> K) .
eq k(val(iv(I),iv(I’)) -> toInvoke(n(’>=)) -> K) = k(val(bv(I >= I’)) -> K) .

eq k(val(iv(I),iv(I’)) -> toInvoke(n(’=)) -> K) = k(val(bv(I == I’)) -> K) .
eq k(val(iv(I),iv(I’)) -> toInvoke(n(’!=)) -> K) = k(val(bv(I =/= I’)) -> K) .

eq k(val(iv(I),fv(F’)) -> toInvoke(n(’<)) -> K) = k(val(bv(float(I) < F’)) -> K) .
eq k(val(iv(I),fv(F’)) -> toInvoke(n(’<=)) -> K) = k(val(bv(float(I) <= F’)) -> K) .

21

eq k(val(iv(I),fv(F’)) -> toInvoke(n(’>)) -> K) = k(val(bv(float(I) > F’)) -> K) .

eq k(val(iv(I),fv(F’)) -> toInvoke(n(’>=)) -> K) = k(val(bv(float(I) >= F’)) -> K) .
eq k(val(iv(I),fv(F’)) -> toInvoke(n(’=)) -> K) = k(val(bv(float(I) == F’)) -> K) .

eq k(val(iv(I),fv(F’)) -> toInvoke(n(’!=)) -> K) = k(val(bv(float(I) =/= F’)) -> K) .

eq k(val(fv(F),iv(I’)) -> toInvoke(n(’<)) -> K) = k(val(bv(F < float(I’))) -> K) .

eq k(val(fv(F),iv(I’)) -> toInvoke(n(’<=)) -> K) = k(val(bv(F <= float(I’))) -> K) .
eq k(val(fv(F),iv(I’)) -> toInvoke(n(’>)) -> K) = k(val(bv(F > float(I’))) -> K) .

eq k(val(fv(F),iv(I’)) -> toInvoke(n(’>=)) -> K) = k(val(bv(F >= float(I’))) -> K) .
eq k(val(fv(F),iv(I’)) -> toInvoke(n(’=)) -> K) = k(val(bv(F == float(I’))) -> K) .
eq k(val(fv(F),iv(I’)) -> toInvoke(n(’!=)) -> K) = k(val(bv(F =/= float(I’))) -> K) .

eq k(val(fv(F),fv(F’)) -> toInvoke(n(’<)) -> K) = k(val(bv(F < F’)) -> K) .

eq k(val(fv(F),fv(F’)) -> toInvoke(n(’<=)) -> K) = k(val(bv(F <= F’)) -> K) .
eq k(val(fv(F),fv(F’)) -> toInvoke(n(’>)) -> K) = k(val(bv(F > F’)) -> K) .

eq k(val(fv(F),fv(F’)) -> toInvoke(n(’>=)) -> K) = k(val(bv(F >= F’)) -> K) .
eq k(val(fv(F),fv(F’)) -> toInvoke(n(’=)) -> K) = k(val(bv(F == F’)) -> K) .
eq k(val(fv(F),fv(F’)) -> toInvoke(n(’!=)) -> K) = k(val(bv(F =/= F’)) -> K) .

eq k(val(iv(I),Vl) -> toInvoke(Xm) -> K) =

k(newPrimInt(primInt(I)) -> boxWList(Vl) -> toInvoke(Xm) -> K) [owise] .

eq k(val(fv(F),Vl) -> toInvoke(Xm) -> K) =
k(newPrimFloat(primFloat(F)) -> boxWList(Vl) -> toInvoke(Xm) -> K) [owise] .

eq k(val(bv(B),Vl) -> toInvoke(Xm) -> K) =
k(newPrimBool(primBool(B)) -> boxWList(Vl) -> toInvoke(Xm) -> K) [owise] .

op boxWList : ValueList -> ContinuationItem .

eq k(val(V) -> boxWList(Vl) -> K) = k(val(V,Vl) -> K) .

*** Second, now that we have an object back that we can invoke on,
*** save the current context and start searching for the method

*** in the dynamic class of the object.
*** Note that we clear the loop stack so we cannot break or continue
*** out of a method called inside a loop.

var ts : KState .

op invoke : Name ValueList -> ContinuationItem .
eq t(control(k(val(o(myclass(Xc) O), Vl) -> toInvoke(Xm) -> K) CS) cclass(Xc’) cobj(O’) env(Env) TS)

cset(cls(cname(Xc) CI) Cs) =

t(control(k(pushMStack(K,CS,Env,O’,Xc’) -> clearLStack -> invoke(Xm,Vl)) CS)
cclass(Xc) cobj(myclass(Xc) O) env(baseenv) TS)

cset(cls(cname(Xc) CI) Cs) [owise] .

eq t(control(k(val(o(myclass(Xc) O), Vl) -> toInvokeAndWrap(Xm) -> K) CS)
cclass(Xc’) cobj(O’) env(Env) TS)
cset(cls(cname(Xc) CI) Cs) =

t(control(k(pushMStack(discard -> val(o(myclass(Xc) O)) -> K,CS,Env,O’,Xc’) -> clearLStack ->
invoke(Xm,Vl)) CS)

cclass(Xc) cobj(myclass(Xc) O) env(baseenv) TS)
cset(cls(cname(Xc) CI) Cs) .

*** If we invoke on a nil reference (like var x ; x + 5) throw an exception

eq k(val(nil, Vl) -> toInvoke(Xm) -> K) =

k(stmt(throw (new NilPointerException(s("Attempted to invoke on a nil reference"))) ;) -> K) .

eq k(val(nil, Vl) -> toInvokeAndWrap(Xm) -> K) =

k(stmt(throw (new NilPointerException(s("Attempted to invoke on a nil reference"))) ;) -> K) .

*** If we find the method to invoke, bind the formals and any declarations and
*** invoke the method body.

ceq t(control(k(invoke(Xm,Vl) -> K) CS) cclass(Xc) TS)

22

cset(cls(cname(Xc) mthds(mthd(mname(Xm) mparams(Dl) mdecls(Ds) mbody(Km) Mi) Ms) CI) Cs) =

t(control(k(val(Vl) -> bind(declListNames(Dl)) -> bind(declSetNames(Ds)) -> Km -> K) CS) cclass(Xc) TS)
cset(cls(cname(Xc) mthds(mthd(mname(Xm) mparams(Dl) mdecls(Ds) mbody(Km) Mi) Ms) CI) Cs)

if len(Vl) == len(declListNames(Dl)) .
ceq t(control(k(invoke(Xm,Vl) -> K) CS) cclass(Xc) TS)

cset(cls(cname(Xc) mthds(mthd(mname(Xm) mparams(Dl) mdecls(Ds) mbody(Km) Mi) Ms) CI) Cs) =

t(control(k(stmt(throw (new InvalidSignatureException(s(string(getQid(Xm))))) ;) -> K) CS) cclass(Xc) TS)
cset(cls(cname(Xc) mthds(mthd(mname(Xm) mparams(Dl) mdecls(Ds) mbody(Km) Mi) Ms) CI) Cs)

if len(Vl) =/= len(declListNames(Dl)) .

op getQid : Name -> Qid .

eq getQid(n(Q)) = Q .

*** If we don’t find the method to invoke in the current class, switch context to the parent

*** class and keep looking. Change the name to match the parent class name when the method
*** and class have the same name (we are calling a constructor).

eq t(control(k(invoke(Xm,Vl) -> K) CS) cclass(Xc) TS) cset(cls(cname(Xc) pname(Xc’) CI) Cs) =
t(control(k(invoke(if Xm == Xc then Xc’ else Xm fi,Vl) -> K) CS) cclass(Xc’) TS)

cset(cls(cname(Xc) pname(Xc’) CI) Cs) [owise] .

*** If we don’t find the method at all, throw a MethodNotFound exception.

var Q : Qid .
eq t(control(k(invoke(n(Q),Vl) -> K) CS) cclass(n(’Object)) TS) cset(Cs) =

t(control(k(stmt(throw (new MethodNotFoundException(s(string(Q)))) ;) -> K) CS)
cclass(n(’Object)) TS) cset(Cs) [owise] .

endm

Primitives Semantics Changes The PRIMITIVES-SEMANTICS module has
been modified to account for auto-boxing. Now unboxed values are returned
by primitive operations by default, versus creating new objects to represent the
values of primitive operations.

mod PRIMITIVES-SEMANTICS is

including PRIM-BASIC .
including NEW-SEMANTICS .
including EXCEPTION-SYNTAX .

protecting MAP{Int,Continuation} * (sort Map{Int,Continuation} to PrimMap) .
protecting MAP{Int,Value} * (sort Map{Int,Value} to PrimInts, op undefined to noPrimInt) .

protecting MAP{Bool,Value} * (sort Map{Bool,Value} to PrimBools, op undefined to noPrimBool) .

vars I I’ : Int . vars F F’ : Float . vars C C’ : Char .
vars B B’ : Bool . vars S S’ : String . var L : Location .
vars O O’ : Object . var OE : ObjEnv .

var K : Continuation . vars TS CS : KState . var Sl : StringList .
var N : Nat . vars E E’ E1 E2 E3 : Exp .

vars V V’ V1 V2 V3 : Value . var Xc : Name .

*** Handle primitive invocations from the language syntax. First, get back prim index
*** and prim args.

op primInvokeNullary : -> ContinuationItem .

eq k(exp(primInvokeNullary E) -> K) = k(exp(E) -> primInvokeNullary -> K) .

op primInvokeUnary : -> ContinuationItem .

eq k(exp(primInvokeUnary E E1) -> K) = k(exp(E,E1) -> fetchPrimBinary -> primInvokeUnary -> K) .

op primInvokeBinary : -> ContinuationItem .
eq k(exp(primInvokeBinary E E1 E2) -> K) = k(exp(E,E1,E2) -> fetchPrimTernary -> primInvokeBinary -> K) .

*** Now use prim index to pick correct primitive operation

23

var CI : Continuation . var PM : PrimMap . var ts : KState .

ceq t(control(k(val(primInt(I)) -> primInvokeNullary -> K) CS) TS) primMap(PM) =
t(control(k(CI -> K) CS) TS) primMap(PM)

if CI := PM[I] .

ceq t(control(k(val(primInt(I),V) -> primInvokeUnary -> K) CS) TS) primMap(PM) =
t(control(k(val(V) -> CI -> K) CS) TS) primMap(PM)

if CI := PM[I] .
ceq t(control(k(val(primInt(I),V,V’) -> primInvokeBinary -> K) CS) TS)primMap(PM) =

t(control(k(val(V,V’) -> CI -> K) CS) TS) primMap(PM)

if CI := PM[I] .

ceq t(control(k(val(iv(I)) -> primInvokeNullary -> K) CS) TS) primMap(PM) =
t(control(k(CI -> K) CS) TS) primMap(PM)

if CI := PM[I] .
ceq t(control(k(val(iv(I),V) -> primInvokeUnary -> K) CS) TS) primMap(PM) =

t(control(k(val(V) -> CI -> K) CS) TS) primMap(PM)

if CI := PM[I] .
ceq t(control(k(val(iv(I),V,V’) -> primInvokeBinary -> K) CS) TS) primMap(PM) =

t(control(k(val(V,V’) -> CI -> K) CS) TS) primMap(PM)
if CI := PM[I] .

*** Retrieve primitive components from objects.

op fetchPrimUnary : -> ContinuationItem .

eq control(k(val(o(myclass(Xc) O)) -> fetchPrimUnary -> K) CS) cobj(O’) =
control(k(olookup(pval,Xc) -> resetObjectTo(O’) -> K) CS) cobj(myclass(Xc) O) .

*** In case the primitive is an int (used to select from the prim map), convert

*** it to a primitive here

eq control(k(val(iv(I)) -> fetchPrimUnary -> K) CS) =
control(k(val(primInt(I)) -> K) CS) .

op fetchPrimBinary : -> ContinuationItem .
op fetchPrimBinary : Value -> ContinuationItem .

eq k(val(V,V’) -> fetchPrimBinary -> K) =
k(val(V’) -> fetchPrimUnary -> fetchPrimBinary(V) -> K) .

eq k(val(V’) -> fetchPrimBinary(V) -> K) =

k(val(V) -> fetchPrimUnary -> val(V’) -> K) .

op fetchPrimTernary : -> ContinuationItem .
op fetchPrimTernary : Value -> ContinuationItem .

eq k(val(V1,V2,V3) -> fetchPrimTernary -> K) =
k(val(V2,V3) -> fetchPrimBinary -> fetchPrimTernary(V1) -> K) .

eq k(val(V2,V3) -> fetchPrimTernary(V1) -> K) =

k(val(V1) -> fetchPrimUnary -> val(V2,V3) -> K) .

*** Store primitive values back into an object

op storePrim : Value -> ContinuationItem .
eq control(k(val(o(myclass(Xc) O)) -> storePrim(V) -> K) CS) cobj(O’) =

control(k(val(V) -> oassignTo(pval,Xc) -> resetObjectTo(O’) -> val(o(myclass(Xc) O)) -> K) CS)
cobj(myclass(Xc) O) .

*** Primitive arithmetic and relational ops for ints, including

*** coersions to floats.

*** 12/18/2006 MAH
*** Now return scalars; these will be boxed if need be

ops primIntB+ primIntB- primIntB* primIntB/ primIntB% : -> ContinuationItem .
ops primInt> primInt>= primInt< primInt<= primInt= primInt!= : -> ContinuationItem .

24

eq k(val(primInt(I),primInt(I’)) -> primIntB+ -> K) = k(val(iv(I + I’)) -> K) .
eq k(val(primInt(I),primInt(I’)) -> primIntB- -> K) = k(val(iv(I - I’)) -> K) .

eq k(val(primInt(I),primInt(I’)) -> primIntB* -> K) = k(val(iv(I * I’)) -> K) .
eq k(val(primInt(I),primInt(I’)) -> primIntB/ -> K) = k(val(iv(I quo I’)) -> K) .
eq k(val(primInt(I),primInt(I’)) -> primIntB% -> K) = k(val(iv(I rem I’)) -> K) .

eq k(val(primInt(I),primFloat(F’)) -> primIntB+ -> K) = k(val(fv(float(I) + F’)) -> K) .

eq k(val(primInt(I),primFloat(F’)) -> primIntB- -> K) = k(val(fv(float(I) - F’)) -> K) .
eq k(val(primInt(I),primFloat(F’)) -> primIntB* -> K) = k(val(fv(float(I) * F’)) -> K) .
eq k(val(primInt(I),primFloat(F’)) -> primIntB/ -> K) = k(val(fv(float(I) / F’)) -> K) .

eq k(val(primInt(I),primInt(I’)) -> primInt> -> K) = k(val(bv(I > I’)) -> K) .

eq k(val(primInt(I),primInt(I’)) -> primInt>= -> K) = k(val(bv(I >= I’)) -> K) .
eq k(val(primInt(I),primInt(I’)) -> primInt< -> K) = k(val(bv(I < I’)) -> K) .

eq k(val(primInt(I),primInt(I’)) -> primInt<= -> K) = k(val(bv(I <= I’)) -> K) .
eq k(val(primInt(I),primInt(I’)) -> primInt= -> K) = k(val(bv(I == I’)) -> K) .
eq k(val(primInt(I),primInt(I’)) -> primInt!= -> K) = k(val(bv(I =/= I’)) -> K) .

eq k(val(primInt(I),primFloat(F’)) -> primInt> -> K) = k(val(bv(float(I) > F’)) -> K) .

eq k(val(primInt(I),primFloat(F’)) -> primInt>= -> K) = k(val(bv(float(I) >= F’)) -> K) .
eq k(val(primInt(I),primFloat(F’)) -> primInt< -> K) = k(val(bv(float(I) < F’)) -> K) .

eq k(val(primInt(I),primFloat(F’)) -> primInt<= -> K) = k(val(bv(float(I) <= F’)) -> K) .
eq k(val(primInt(I),primFloat(F’)) -> primInt= -> K) = k(val(bv(float(I) == F’)) -> K) .
eq k(val(primInt(I),primFloat(F’)) -> primInt!= -> K) = k(val(bv(float(I) =/= F’)) -> K) .

*** Primitive arithmetic and relational ops for floats, including
*** coersions from ints on the second arguments.

ops primFloatB+ primFloatB- primFloatB* primFloatB/ : -> ContinuationItem .
ops primFloat> primFloat>= primFloat< primFloat<= primFloat= primFloat!= : -> ContinuationItem .

eq k(val(primFloat(F),primFloat(F’)) -> primFloatB+ -> K) = k(val(fv(F + F’)) -> K) .

eq k(val(primFloat(F),primFloat(F’)) -> primFloatB- -> K) = k(val(fv(F - F’)) -> K) .
eq k(val(primFloat(F),primFloat(F’)) -> primFloatB* -> K) = k(val(fv(F * F’)) -> K) .
eq k(val(primFloat(F),primFloat(F’)) -> primFloatB/ -> K) = k(val(fv(F / F’)) -> K) .

eq k(val(primFloat(F),primInt(I’)) -> primFloatB+ -> K) = k(val(fv(F + float(I’))) -> K) .

eq k(val(primFloat(F),primInt(I’)) -> primFloatB- -> K) = k(val(fv(F - float(I’))) -> K) .
eq k(val(primFloat(F),primInt(I’)) -> primFloatB* -> K) = k(val(fv(F * float(I’))) -> K) .
eq k(val(primFloat(F),primInt(I’)) -> primFloatB/ -> K) = k(val(fv(F / float(I’))) -> K) .

eq k(val(primFloat(F),primFloat(F’)) -> primFloat> -> K) = k(val(bv(F > F’)) -> K) .

eq k(val(primFloat(F),primFloat(F’)) -> primFloat>= -> K) = k(val(bv(F >= F’)) -> K) .
eq k(val(primFloat(F),primFloat(F’)) -> primFloat< -> K) = k(val(bv(F < F’)) -> K) .

eq k(val(primFloat(F),primFloat(F’)) -> primFloat<= -> K) = k(val(bv(F <= F’)) -> K) .
eq k(val(primFloat(F),primFloat(F’)) -> primFloat= -> K) = k(val(bv(F == F’)) -> K) .
eq k(val(primFloat(F),primFloat(F’)) -> primFloat!= -> K) = k(val(bv(F =/= F’)) -> K) .

eq k(val(primFloat(F),primInt(I’)) -> primFloat> -> K) = k(val(bv(F > float(I’))) -> K) .

eq k(val(primFloat(F),primInt(I’)) -> primFloat>= -> K) = k(val(bv(F >= float(I’))) -> K) .
eq k(val(primFloat(F),primInt(I’)) -> primFloat< -> K) = k(val(bv(F < float(I’))) -> K) .
eq k(val(primFloat(F),primInt(I’)) -> primFloat<= -> K) = k(val(bv(F <= float(I’))) -> K) .

eq k(val(primFloat(F),primInt(I’)) -> primFloat= -> K) = k(val(bv(F == float(I’))) -> K) .
eq k(val(primFloat(F),primInt(I’)) -> primFloat!= -> K) = k(val(bv(F =/= float(I’))) -> K) .

*** Primitive read/write ops for strings, numeric values, and bools

var ios : KState .

ops primRead primReadInt primReadFloat primReadBool primWrite primConcat primStrLen : -> ContinuationItem .

rl t(control(k(val(primString(S)) -> primWrite -> K) CS) TS) io(output(Sl) ios) =>
t(control(k(K) CS) TS) io(output(Sl,S) ios) .

rl t(control(k(primRead -> K) CS) TS) io(input(S,Sl) ios) =>

t(control(k(exp(new String(empty)) -> storePrim(primString(S)) -> K) CS) TS) io(input(Sl) ios) .
rl t(control(k(primReadInt -> K) CS) TS) io(input(S,Sl) ios) =>

25

t(control(k(newPrimInt(primInt(trunc(rat(S,10)))) -> K) CS) TS) io(input(Sl) ios) .

rl t(control(k(primReadFloat -> K) CS) TS) io(input(S,Sl) ios) =>
t(control(k(exp(new Float(empty)) -> storePrim(primFloat(float(S))) -> K) CS) TS) io(input(Sl) ios) .

rl t(control(k(primReadBool -> K) CS) TS) io(input("true",Sl) ios) =>
t(control(k(newPrimBool(primBool(true)) -> K) CS) TS) io(input(Sl) ios) .

rl t(control(k(primReadBool -> K) CS) TS) io(input("false",Sl) ios) =>

t(control(k(newPrimBool(primBool(false)) -> K) CS) TS) io(input(Sl) ios) .
eq k(val(primString(S),primString(S’)) -> primConcat -> K) =

k(exp(new String(empty)) -> storePrim(primString(S + S’)) -> K) .
eq k(val(primString(S)) -> primStrLen -> K) = k(newPrimInt(primInt(length(S))) -> K) .

*** Ops to convert primitive values to strings

op toStringInt : -> ContinuationItem .

eq k(val(primInt(I)) -> toStringInt -> K) = k(exp(new String(empty)) -> storePrim(primString(string(I,10))) -> K) .

op toStringFloat : -> ContinuationItem .

eq k(val(primFloat(F)) -> toStringFloat -> K) = k(exp(new String(empty)) -> storePrim(primString(string(F))) -> K) .

op toStringBool : -> ContinuationItem .
eq k(val(primBool(true)) -> toStringBool -> K) = k(exp(new String(empty)) -> storePrim(primString("true")) -> K) .

eq k(val(primBool(false)) -> toStringBool -> K) = k(exp(new String(empty)) -> storePrim(primString("false")) -> K) .

*** Ops to convert strings to primitive values

op toIntString : -> ContinuationItem .
eq k(val(primString(S)) -> toIntString -> K) = k(newPrimInt(primInt(trunc(rat(S,10)))) -> K) .

op toFloatString : -> ContinuationItem .
eq k(val(primString(S)) -> toFloatString -> K) = k(exp(new Float(empty)) -> storePrim(primFloat(float(S))) -> K) .

op toBoolString : -> ContinuationItem .

eq k(val(primString("true")) -> toBoolString -> K) = k(newPrimBool(primBool(true)) -> K) .
eq k(val(primString("false")) -> toBoolString -> K) = k(newPrimBool(primBool(false)) -> K) .

*** Ops to speed up primitives, so we only create each one once -- especially

*** useful for invariant primitive objects like integers and booleans, where we
*** cannot change the primitive value from the outside

op primInts : PrimInts -> KState [format (mu! o)] .

var PIs : PrimInts .

ceq t(control(k(newPrimInt(primInt(I)) -> K) CS) TS) primInts(PIs) =
t(control(k(val(V) -> K) CS) TS) primInts(PIs)

if V := PIs[I] /\ V =/= noPrimInt .

ceq t(control(k(newPrimInt(primInt(I)) -> K) CS) TS) primInts(PIs) =
t(control(k(exp(new Integer(empty)) -> storePrim(primInt(I)) -> addPI(I) -> K) CS) TS) primInts(PIs)

if PIs[I] == noPrimInt .

op addPI : Int -> ContinuationItem .

eq t(control(k(val(V) -> addPI(I) -> K) CS) TS) primInts(PIs) =
t(control(k(val(V) -> K) CS) TS) primInts(insert(I,V,PIs)) .

op primBools : PrimBools -> KState [format (mu! o)] .

var PBs : PrimBools .

ceq t(control(k(newPrimBool(primBool(B)) -> K) CS) TS) primBools(PBs) =
t(control(k(val(V) -> K) CS) TS) primBools(PBs)

if V := PBs[B] /\ V =/= noPrimBool .
ceq t(control(k(newPrimBool(primBool(B)) -> K) CS) TS) primBools(PBs) =

t(control(k(exp(new Boolean(empty)) -> storePrim(primBool(B)) -> addPB(B) -> K) CS) TS) primBools(PBs)

if PBs[B] == noPrimBool .

26

op addPB : Bool -> ContinuationItem .

eq t(control(k(val(V) -> addPB(B) -> K) CS) TS) primBools(PBs) =
t(control(k(val(V) -> K) CS) TS) primBools(insert(B,V,PBs)) .

eq t(control(k(newPrimFloat(primFloat(F)) -> K) CS) TS) =
t(control(k(exp(new Float(empty)) -> storePrim(primFloat(F)) -> K) CS) TS) .

*** Define the primitive map, which maps numbers to primitive functions.

op primMap : PrimMap -> KState [format (mu! o)] .

*** The initial map of built-in primitives.

op Prims : -> PrimMap .

eq Prims = (1 |-> primIntB+), (2 |-> primIntB-), (3 |-> primIntB*), (4 |-> primIntB/),
(5 |-> primIntB%), (6 |-> primInt<), (7 |-> primInt<=), (8 |-> primInt>),
(9 |-> primInt>=), (10 |-> primInt=), (11 |-> primInt!=), (12 |-> toStringInt),

(13 |-> primFloatB+), (14 |-> primFloatB-), (15 |-> primFloatB*), (16 |-> primFloatB/),
(17 |-> primFloat<), (18 |-> primFloat<=), (19 |-> primFloat>), (20 |-> primFloat>=),

(21 |-> primFloat=), (22 |-> primFloat!=), (23 |-> toStringFloat), (24 |-> toStringBool),
(25 |-> primWrite), (26 |-> primRead), (27 |-> primReadInt), (28 |-> primReadFloat),

(29 |-> primReadBool), (30 |-> primConcat), (31 |-> primStrLen), (32 |-> toIntString),
(33 |-> toFloatString), (34 |-> toBoolString) .

endm

Scalars Semantics Changes The SCALARS-SEMANTICSmodule has been mod-
ified to not box scalar values by default.

*** 12/18/2006 MAH
*** Overriding the automatic conversion of scalars into objects. Instead, we will
*** keep scalars for integers, floats, and booleans, and we will then box and unbox

*** them when needed.

mod SCALARS-SEMANTICS is
including STATE-HELPERS .
including EXP-SEMANTICS .

including SCALARS-SYNTAX .
including NEW-SEMANTICS .

including PRIMITIVES-SEMANTICS .

var I : Int . var F : Float . var B : Bool .
var C : Char . var S : String . var K : Continuation .

*** When we find a string or character scalar, create a new object for it

eq k(exp(c(C)) -> K) = k(exp(new Char(empty)) -> storePrim(primChar(C)) -> K) .

eq k(exp(s(S)) -> K) = k(exp(new String(empty)) -> storePrim(primString(S)) -> K) .

*** When we find an integer, float, or boolean scalar, keep it in scalar form,
*** boxing it later if need be (to call methods on it, for instance)

eq k(exp(i(I)) -> K) = k(val(iv(I)) -> K) .
eq k(exp(f(F)) -> K) = k(val(fv(F)) -> K) .

eq k(exp(b(B)) -> K) = k(val(bv(B)) -> K) .

*** eq k(exp(i(I)) -> K) = k(newPrimInt(primInt(I)) -> K) .
*** eq k(exp(f(F)) -> K) = k(newPrimFloat(primFloat(F)) -> K) .

*** eq k(exp(b(B)) -> K) = k(newPrimBool(primBool(B)) -> K) .

endm

27

Conditional Semantics Changes The CONDITIONAL-SEMANTICS module has
been modified to allow scalar values for booleans to be used in the conditional
to determine which branch to take.

*** 12/18/2006 MAH

*** Added unboxed values for true and false for selection of proper if clause.

mod CONDITIONAL-SEMANTICS is

including STATE-HELPERS .
including EXP-SEMANTICS .

including STMT-SEMANTICS .
including SCALARS-SEMANTICS .

including CONDITIONAL-SYNTAX .
including PRIMITIVES-SEMANTICS .

op skip : -> Stmt .
op if : Stmt Stmt -> ContinuationItem .

var E : Exp . vars S S’ : Stmt . var V : Value .
var K : Continuation . var O : Object .

eq if E then S fi = if E then S else skip fi .

eq k(stmt(skip) -> K) = k(K) .
eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’) .

eq val(o(O)) -> if(S,S’) = val(o(O)) -> fetchPrimUnary -> if(S,S’) .
eq val(primBool(true)) -> if(S,S’) = stmt(S) .
eq val(primBool(false)) -> if(S,S’) = stmt(S’) .

eq val(bv(true)) -> if(S,S’) = stmt(S) .
eq val(bv(false)) -> if(S,S’) = stmt(S’) .

endm

Typecase Semantics Changes The TYPECASE-SEMANTICS module has been
modified to allow the typecase statement to work with unboxed values.

mod TYPECASE-SEMANTICS is

including STATE-HELPERS .
including EXP-SEMANTICS .
including STMT-SEMANTICS .

including TYPECASE-SYNTAX .
including CLASS .

including SCALARS-SEMANTICS .

var E : Exp . var Cs : Cases . var C : Case . var EC : ElseCase .
vars Xc Xc’ Xc’’ : Name . var O : Object .
vars CSet CSet’ CSet’’ : ClassSet .

vars Xs Xs’ Xs’’ : NameSet . var S : Stmt .
var K : Continuation . var CS : KState . var CI : ClassItem .

var TS : KState . var ts : KState .
var I : Int . var F : Float . var B : Bool .

op typecase : Cases -> ContinuationItem .
op elsecase : ElseCase -> ContinuationItem .

op noelse : -> ContinuationItem .
op case : Case -> ContinuationItem .

op getInherits : Name -> ContinuationItem .
op buildInherits : Name -> ContinuationItem .
op inherits : NameSet -> Continuation .

op discardelse : -> ContinuationItem .

eq stmt(typecase E of Cs end) = exp(E) -> typecase(Cs) -> noelse .
eq stmt(typecase E of Cs EC end) = exp(E) -> typecase(Cs) -> elsecase(EC) .

eq val(iv(I)) -> typecase(Cs) = getInherits(Integer) -> typecase(Cs) .
eq val(fv(F)) -> typecase(Cs) = getInherits(Float) -> typecase(Cs) .

28

eq val(bv(B)) -> typecase(Cs) = getInherits(Boolean) -> typecase(Cs) .

eq val(o(O myclass(Xc))) -> typecase(Cs) = getInherits(Xc) -> typecase(Cs) .
eq inherits(Xs) -> typecase(C, Cs) = inherits(Xs) -> case(C) -> typecase(Cs) .

eq inherits(Xc Xs) -> case(case Xc of S) -> typecase(Cs) = stmt(S) -> discardelse .
eq inherits(Xc Xs) -> case(case Xc’ of S) -> typecase(Cs) = inherits(Xc Xs) -> typecase(Cs) [owise] .
eq inherits(Xc Xs) -> typecase(empty) = inherits(Xc Xs) .

eq inherits(Xc Xs) -> elsecase(else S) = stmt(S) .
eq inherits(Xc Xs) -> noelse -> K = K .

eq discardelse -> elsecase(EC) -> K = K .
eq discardelse -> noelse -> K = K .

*** If we have already calculated the inherits set, just grab it

*** back out of the class definition.
ceq t(control(k(getInherits(Xc) -> K) CS) TS) cset(cls(cname(Xc) inheritsSet(Xs) CI) CSet) =

t(control(k(inherits(Xs) -> K) CS) TS) cset(cls(cname(Xc) inheritsSet(Xs) CI) CSet)
if Xs =/= (emptyset).NameSet .

*** If not, start to calculate it back up towards the root. The advantage here is we

*** can build the entire path at once, so we don’t have to revisit this later. Note:
*** we specify Object’s inheritsSet in the class definition, so this will not

*** recurse forever or "fall off" the end.

ceq t(control(k(getInherits(Xc) -> K) CS) TS) cset(cls(cname(Xc) pname(Xc’) inheritsSet(Xs) CI) CSet) =

t(control(k(getInherits(Xc’) -> buildInherits(Xc) -> K) CS) TS) cset(cls(cname(Xc) pname(Xc’)
inheritsSet(Xs) CI) CSet)

if Xs == (emptyset).NameSet .

*** When we have calculated the name set back up towards the root, save it
*** and pass it on.

eq t(control(k(inherits(Xs) -> buildInherits(Xc) -> K) CS) TS) cset(cls(cname(Xc) inheritsSet(Xs’) CI) CSet) =

t(control(k(inherits(Xs Xc) -> K) CS) TS) cset(cls(cname(Xc) inheritsSet(Xs Xc) CI) CSet) .
endm

Concurrency Semantics Changes The CONCURRENCY-SEMANTICSmodule has
been modified to work properly with memory pools.

mod CONCURRENCY-SEMANTICS is
including STATE-HELPERS .

including STMT-SEMANTICS .
including EXP-SEMANTICS .

including CONCURRENCY-SYNTAX .
including SEND-SEMANTICS .
including SUPER-SEMANTICS .

var E : Exp . var Es : Exps . vars Xm Xc : Name . var Vl : ValueList .

var K : Continuation . vars CS TS SS cns ts : KState . var LTS : LockTupleSet .
var V : Value . var LS : LockSet . vars N M N’ : Nat . var O : Object .

var CI : ClassItem . var Cs : ClassSet . var Env : Env . var L : Location .
var X : Name . var OE : ObjEnv .

*** Standard spawn -- run a method call in a new thread

eq t(control(k(stmt(spawn E . Xm (Es) ;) -> K) CS) holds(LTS) TS) =

t(control(k(exp(E,Es) -> toInvokeAndSpawn(Xm) -> K) CS) holds(LTS) TS) .

*** Shared memory strategy -- we will use a very simple shared memory strategy

*** for spawned threads. All locations reachable through the target object,
*** plus all locations reachable through the value list Vl, will be made
*** shared. This is conservative, albeit overly general, and works in

29

*** difficult cases -- spawning calls on self, multiple spawns on the same

*** object, etc. This means that the best performance will be using variables
*** local to a method, since those will not be shared by default.

*** One question that may come up -- why reassign twice? This ensures that,
*** before either thread accesses memory, reallocation has taken place, the risk

*** being that the spawning thread could access memory before it is marked shared

op toInvokeAndSpawn : Name -> ContinuationItem .
rl t(control(k(val(o(myclass(Xc) O), Vl) -> toInvokeAndSpawn(Xm) -> K) CS) TS) cset(cls(cname(Xc) CI) Cs)

counters(nextTid(N) tc(N’) cns) =>

t(control(k(reassign(valLocs(o(myclass(Xc) O), Vl)) -> K) CS) TS)
t(control(k(reassign(valLocs(o(myclass(Xc) O), Vl)) -> invoke(Xm,Vl) -> die)

mstack(empty) estack(empty) lstack(empty))
cclass(Xc) cobj(myclass(Xc) O) env(baseenv) holds(empty) tid(N) lbl(n(’init)))

cset(cls(cname(Xc) CI) Cs) counters(nextTid(s(N)) tc(s(N’)) cns) .
eq k(val(nil, Vl) -> toInvokeAndSpawn(Xm) -> K) =

k(stmt(throw (new NilPointerException(s("Attempted to invoke on a nil reference"))) ;) -> K) .

*** When we spawn a new thread, just hand control over to the existing method
*** invocation continuation items. Start with empty stacks, so we cannot

*** "throw" our way out of a thread, for instance.

*** MAH 1/3/2007 Now an "arbitrary" spawn, not covering method calls. This allows

*** arbitrary expressions to be spawned in a new thread, like 1 + 2, if this is needed
*** for some reason. This can be expensive for analysis, since this makes all

*** locations reachable from the current context shared.

rl t(control(k(stmt(spawn E ;) -> K) CS) cobj(O) env(Env) holds(LTS) tid(N) TS) counters(nextTid(M) tc(N’) cns) =>

t(control(k(K) CS) holds(LTS) tid(N) cobj(O) env(Env) TS)
t(control(k(reassign(valLocs(o(O)),envLocs(Env)) -> exp(E) -> die) mstack(empty) estack(empty) lstack(empty))

holds(empty) cobj(O) env(Env) tid(M) TS) counters(nextTid(s(M)) tc(s(N’)) cns) .

*** To acquire a lock, we need to check to see if we already hold it. If
*** so, increment the counter. If not, wait until it is available.

op acquire : -> ContinuationItem .

eq stmt(acquire E ;) = exp(E) -> acquire .
eq control(k(val(V) -> acquire -> K) CS) holds(LTS [lk(V),N]) =

control(k(K) CS) holds(LTS [lk(V),s(N)]) .

crl t(control(k(val(V) -> acquire -> K) CS) holds(LTS) TS) busy(LS) =>
t(control(k(K) CS) holds(LTS [lk(V),1]) TS) busy(LS lk(V))

if notin(LS,lk(V)) .

*** To release a lock, decrement the counter, unless it is already 1. If
*** it is, remove it from the busy set as well.

op release : -> ContinuationItem .

eq stmt(release E ;) = exp(E) -> release .
eq t(control(k(val(V) -> release -> K) CS) holds(LTS [lk(V),1]) TS) busy(LS lk(V)) =

t(control(k(K) CS) holds(LTS) TS) busy(LS) .

eq t(control(k(val(V) -> release -> K) CS) holds(LTS [lk(V),s(N)]) TS) busy(LS lk(V)) =
t(control(k(K) CS) holds(LTS [lk(V),N]) TS) busy(LS lk(V)) [owise] .

*** When a thread dies, remove it. Also, release all its
*** locks.

op die : -> ContinuationItem .
eq t(control(k(val(V) -> die) CS) holds(LTS) TS) busy(LS) counters(tc(s(N)) cns) =

busy(LS - LTS) counters(tc(N) cns) .
eq t(control(k(val(V) -> popMStack -> die) CS) holds(LTS) TS) busy(LS) counters(tc(s(N)) cns) =

busy(LS - LTS) counters(tc(N) cns) .

endm

30

Assert Semantics The ASSERT-SEMANTICS module is new, and provides sup-
port for both the assert statement and labels.

mod ASSERT-SEMANTICS is

including STATE-HELPERS .
including STMT-SEMANTICS .

including EXP-SEMANTICS .
including ASSERT-SYNTAX .
including PRIMITIVES-SEMANTICS .

var E : Exp . var K : Continuation . vars X X’ : Name .

vars CS TS ts : KState . var V : Value . var B : Bool .

eq k(stmt(assert(E) ;) -> K) = k(exp(E) -> assert -> K) .

op assert : -> Continuation .

eq t(control(k(val(primBool(true)) -> assert -> K) CS) TS) = t(control(k(K) CS) TS) .
rl t(control(k(val(primBool(false)) -> assert -> K) CS) TS) aflag(B) =>

t(control(k(stmt(throw (new AssertException(s("Assertion triggered"))) ;) -> K) CS) TS) aflag(true) .
eq t(control(k(val(bv(true)) -> assert -> K) CS) TS) = t(control(k(K) CS) TS) .
rl t(control(k(val(bv(false)) -> assert -> K) CS) TS) aflag(B) =>

t(control(k(stmt(throw (new AssertException(s("Assertion triggered"))) ;) -> K) CS) TS) aflag(true) .
crl t(control(k(val(V) -> assert -> K) CS) TS) aflag(B) =>

t(control(k(stmt(throw (new AssertException(s("Non-boolean assert condition!"))) ;) -> K) CS) TS) aflag(true)
if isBool(V) == false .

rl t(control(k(stmt(label(X)) -> K) CS) lbl(X’) TS) => t(control(k(K) CS) lbl(X) TS) .

op isBool : Value -> Bool .

eq isBool(primBool(B)) = true .
eq isBool(bv(B)) = true .

eq isBool(V) = false [owise] .

endm

Program Semantics Changes The PROGRAM-SEMANTICS module has been
modified to include the new ASSERT-SEMANTICS module.

mod PROGRAM-SEMANTICS is

including STATE-HELPERS .
including PROGRAM-SYNTAX .
including CLASS-SEMANTICS .

including EXP-SEMANTICS .
including NEW-SEMANTICS .

including PRIMITIVES-SEMANTICS .
including SCALARS-SEMANTICS .

including SELF-SEMANTICS .
including SEND-SEMANTICS .
including NAME-SEMANTICS .

including ASSIGNMENT-SEMANTICS .
including BLOCK-SEMANTICS .

including SEQUENCE-SEMANTICS .
including CONDITIONAL-SEMANTICS .
including SUPER-SEMANTICS .

including EXCEPTION-SEMANTICS .
including TYPECASE-SEMANTICS .

including LOOP-SEMANTICS .
including CONCURRENCY-SEMANTICS .

including ASSERT-SEMANTICS .
endm

Main Semantics Changes The MAIN-SEMANTICS module has been modified
to correctly set up the initial state with added state components.

31

mod MAIN-SEMANTICS is
including PROGRAM-SEMANTICS .

including PROGRAM-PRELUDE .
including MAIN-SYNTAX .

var P : Program . vars TS CS S ios ts : KState .
var Sl : StringList . var E : Exp . var Cs : Classes .

op eval : Program -> [StringList] .
op eval* : Program -> [StringList] .

op evalI : Program StringList -> [StringList] .
op evalI* : Program StringList -> [StringList] .

op evalS : Program -> KState .
op stop : -> ContinuationItem .

*** This case handles the scenario where an exception is thrown back to the

*** top -- i.e. there is no handler. It is here since everything we need
*** is already visible at this point.

var Vl : ValueList . var K : Continuation . var Xc’ : Name .

var O’ : Object . var Env : Env . var V : Value .

op join : ValueList -> ContinuationItem .

eq val(V) -> join(Vl) = val(V,Vl) .

eq control(k(val(Vl) -> popAndRunEStack -> K) estack(empty) CS)
env(Env) cobj(O’) cclass(Xc’) =

control(k(exp(n(’console)) -> join(Vl) -> toInvoke(n(’<<)) -> discard -> stop) estack(empty) CS)

env(baseenv) cobj(consoleobj) cclass(Console) .

op initState : Program StringList -> KState .
eq initState(Cs E, Sl) =

t(control(k(exp(E) -> discard -> stop) mstack(empty) estack(empty) lstack(empty))
env(baseenv) cobj(consoleobj) cclass(Console) holds(empty) tid(1) lbl(n(’init)))
io(input(Sl) output(empty))

smem(preludeStore) mem(empty) primInts(empty) primBools(empty) cset(process(Cs)
preludeClasses) busy(empty)

primMap(Prims) counters(nextOid(2) nextLoc(1) nextTid(2) tc(1)) aflag(false) .

eq eval(Cs E) = getOutput(initState(Cs E, empty)) .

eq eval*(Cs E) = getOutput*(initState(Cs E, empty)) .
eq evalS(Cs E) = getFinalKState(initState(Cs E, empty)) .

eq evalI(Cs E,Sl) = getOutput(initState(Cs E, Sl)) .
eq evalI*(Cs E,Sl) = getOutput*(initState(Cs E, Sl)) .

op getOutput : KState -> [StringList] .
op getOutput* : KState -> [StringList] .

eq getOutput(t(control(k(stop) CS) TS) io(output(Sl) ios) S) = Sl .

eq getOutput*(t(control(k(stop) CS) TS) io(output(Sl) ios) tc(1) S) = Sl .

op getFinalKState : KState -> KState .

eq getFinalKState(t(control(k(stop) CS) TS) S) = t(control(k(stop) CS) TS) S .
endm

KOOL Model Checking Module KOOL-MODELCHECKhas been added to provide
basic model checking primitives for use in constructing model checking formulas,
mainly related to assertions and labels.

mod KOOL-MODELCHECK is

including MODEL-CHECKER .
including MAIN-SEMANTICS .
subsort KState < State .

32

op assertTriggered : State -> [Bool] .
op assertFailed : -> Prop .

vars S TS ios : KState . var N : Nat . vars X X’ : Name .

eq assertTriggered(S aflag(true)) = true .
eq assertTriggered(S aflag(false)) = false .

eq S |= assertFailed = assertTriggered(S) .

op labeled : Nat Name -> Prop .
eq t(tid(N) lbl(X) TS) S |= labeled(N,X) = true .

op progress : Nat Name Name -> Prop .

eq progress(N,X,X’) = labeled(N,X) |-> labeled(N,X’) .
endm

KOOL Model Checking, Dining Philosophers This Module is a custom
model checking module used to provide functionality specifically for the dining
philosophers.

mod KOOL-MODELCHECK-DP is
including KOOL-MODELCHECK .

vars N M : Nat .

op someWillEat : Nat Nat -> Prop .
eq someWillEat(N,N) = progress(N,n(’hungry),n(’eating)) .

eq someWillEat(N,M) = progress(N,n(’hungry),n(’eating)) \/ someWillEat(s(N),M) [owise] .
endm

