41 research outputs found

    Thermoluminescent detectors applied in individual monitoring of radiation workers in Europe—a review based on the EURADOS questionnaire

    Get PDF
    Among the activities of EURADOS Working Group 2 formed by experts from several European countries is the harmonisation of individual monitoring as part of radiation protection of occupationally exposed persons. Here, we provide information about thermoluminescent detectors (TLDs) applied by the European dosimetric services and the dosimetric characteristics of dosemeters in which these detectors are applied. Among 91 services from 29 countries which responded to the EURADOS questionnaire, 61 apply dosemeters with TLDs for the determination of personal dose equivalent Hp(10) for photons and beta radiation, and 16 services use TLDs for neutron albedo dosemeters. Those most frequently used are standard lithium fluoride TLDs (mainly TLD-100, TLD-700, Polish MTS-N and MTS-7, Russian DTG-4), high-sensitive lithium fluoride (GR-200, MCP-N) and lithium borate TLDs. Some services use calcium sulphate and calcium fluoride detectors. For neutron dosimetry, most services apply pairs of LiF:Mg,Ti TLDs with 6Li and 7Li. The characteristics (energy response) of individual dosemeters are mainly related to the energy response of the detectors and filters applied. The construction of filters in dosemeters applied for measurements of Hp(10) and their energy response are also reviewe

    Confinement of Monolithic Stationary Phases in Targeted Regions of 3D-Printed Titanium Devices Using Thermal Polymerization

    Get PDF
    Abstract In this study, we have prepared thermally initiated polymeric monolithic stationary phases within discrete regions of 3D-printed titanium devices. The devices were created with controllable hot and cold regions. The monolithic stationary phases were first locally created in capillaries inserted into the channels of the titanium devices. The homogeneity of the monolith structure and the interface length were studied by scanning a capacitively coupled conductivity contactless detector (C4D) along the length of the capillary. Homogeneous monolithic structures could be obtained within a titanium device equipped with a hot and cold jacket connected to two water baths. The confinement method was optimized in capillaries. The sharpest interfaces (between monolith and empty channel) were obtained with the hot region maintained at 70 °C and the cold region at 4 or 10 °C, with the latter temperature yielding better repeatability. The optimized conditions were used to create monoliths bound directly to the walls of the titanium channels. The fabricated monoliths were successfully used to separate a mixture of four intact proteins using reversed-phase liquid chromatography. Further chromatographic characterization showed a permeability (Kf) of ∼4 × 10–15 m2 and a total porosity of 60%. Since their introduction in the chromatographic world, porous polymer monoliths have proven to be powerful separation media. These chromatographic supports have been widely applied for applications, such as microscale liquid chromatography (LC) of peptides and proteins, but have also been used in capillary electrochromatography (CEC),(1) gas chromatography (GC),(2) sample preparation,(3) and catalysis.(4) The ease of preparation of monoliths, diverse chemistry options, and high permeabilities have made them popular materials for analytical devices, such as microfluidic chips for LC. In the past decade, miniaturization has been realized by developing lab-on-a-chip solutions, where several analytical processes can be integrated within a few square centimeters. In such systems, due to the small channels and articulated geometries, the particle-packing procedure has proven to be challenging.(5) In contrast, monolithic beds are usually created in situ by free-radical polymerization of monomers in the presence of porogens and they are well-suited for chip-based separations. The proliferation of microfluidic devices has spurred new interest in polymer monoliths for applications such as enzymatic reactors(6,7) and microfluidic mixers.(8) This development has been boosted by the advent of additive manufacturing (or 3D-printing), which allows for rapid prototyping of complex structures, converting computer-aided-design (CAD) models into physical objects. Unfortunately, the use of 3D-printed analytical devices for chromatographic analysis is limited by the solvent compatibility of some materials (e.g., acrylate-based polymers) and in some cases by their transparency at the desired wavelength (e.g., UV or IR wavelengths). Several successful steps have been taken to locally photopolymerize monolithic stationary phases in discrete regions of microfluidic devices.(9−12) Heat is an alternative way to transfer energy to the monomer precursors for initiating the polymerization. However, accurate control of temperature in small confined spaces is more difficult to achieve, and so far only few steps have been taken in this direction.(13) In this work, two methods are explored to achieve confined thermal polymerization. The first approach involves direct contact (DC) between Peltier elements and the surface of a titanium device. In the second approach, recirculating jackets are used for localized heating and cooling (heating/cooling jackets, HCJ). The latter approach resembles a recirculation-based freeze–thaw valve.(14) In both approaches, defined hot (HR) and cold (CR) regions are created. We aim to fabricate poly(styrene-co-divinylbenzene) (PS-DVB) monolithic stationary phases within a 3D-printed titanium microfluidic device through polymerization at 70 °C, and to separate intact proteins using this device

    Individual monitoring for internal exposures in Europe: Conclusions of an EURADOS action

    Get PDF
    Once the EC Directive 96/29 has been implemented into national regulation across Europe, the coordination of dosimetry laboratories for the monitoring of occupational exposures becomes the principal aim to achieve. Within this framework the European Radiation Dosimetry Group, EURADOS, carried out an Action on ‘Harmonisation of Individual Monitoring' (2000-2004) to promote coordination in the field of individual monitoring of occupational exposures throughout Europe. With reference to internal exposures, the main aims were the completion of a catalogue of internal dosimetry services and an inventory of methods and techniques used for individual monitoring at European internal dosimetry facilities. At the end of this EURADOS Action, a report was published in Radiation Protection Dosimetry in 2004. The information collected related to various topics: the equipments used for the measurement of internal exposures, calibration and sensitivity data, the methods applied for the assessment of internal doses, Quality Control procedures, Quality Assurance Programmes in the facilities and legal requirements. The information to be presented here will give a general overview of the actual status of individual monitoring for internal exposures in Europ

    A catalogue of dosemeters and dosimetric services within Europe—an update

    Get PDF
    The catalogue of dosemeters and dosimetric services within the European Union (EU) Member States and Switzerland that was issued by EURADOS in the year 2000 has been updated and extended with information on dosimetric services in the new EU Member States and Bulgaria, Croatia, Romania, Serbia and Montenegro, and Ukraine. The total number of dosimetric services in these European countries is now estimated to be about 200. The present catalogue is based on information collected from 90 European dosimetric services, among which 34 questionnaires from 32 services were obtained over the years 2001-2004 for the first time. This article assesses and updates the present use of personal dosemeters and the extent to which occupationally exposed persons in Europe are monitored with dosemeters able to measure the operational quantity—personal dose equivalent, HP(d). The perspective of joining EU by the new countries accelerated the implementation of the EU Basic Safety Standard Directive to their national regulations. As a result, all newly investigated services reported their ability to measure HP(d). The catalogue provides information on the dosemeters, dose calculation and background subtraction algorithms, calibration methods, energy and angular response, and performanc

    The 2.3 GHz continuum survey of the GEM project

    Full text link
    We present a partial-sky survey of the radio continuum at 2.3 GHz within the scope of the Galactic Emission Mapping (GEM) project, an observational program conceived and developed to reveal the large-scale properties of Galactic synchrotron radiation through a set of self-consistent surveys of the radio continuum between 408 MHz and 10 GHz. The GEM experiment uses a portable and double-shielded 5.5-m radiotelescope in altazimuthal configuration to map 60-degree-wide declination bands from different observational sites by circularly scanning the sky at zenithal angles of 30 deg from a constantly rotating platform. The observations were accomplished with a total power receiver, whose front-end High Electron Mobility Transistor (HEMT) amplifier was matched directly to a cylindrical horn at the prime focus of the parabolic reflector. The Moon was used to calibrate the antenna temperature scale and the preparation of the map required direct subtraction and destriping algorithms to remove ground contamination as the most significant source of systematic error. We used 484 hours of total intensity observations from two locations in Colombia and Brazil to yield 66% sky coverage from DEC = -51.73 deg to DEC = +34.78 deg. The zero-level uncertainty of the combined survey is 103 mK with a temperature scale error of 5% after direct correlation with the Rhodes/HartRAO survey at 2326 MHz on a T-T plot. The sky brightness distribution into regions of low and high emission in the GEM survey is consistent with the appearance of a transition region as seen in the Haslam 408 MHz and WMAP K-band surveys. Preliminary results also show that the temperature spectral index between 408 MHz and the 2.3 GHz band of the GEM survey has a weak spatial correlation with these regions; but it steepens significantly from high to low emission regions with respect to the WMAP K-band survey.Comment: 20 pages, 21 figures, 6 tables. Extensively revised and enlarged version accepted for publication in Astronomy & Astrophysics. Smaller figure

    The relationship between the perception of distributed leadership in secondary schools and teachers' and teacher leaders' job satisfaction and organizational commitment

    Get PDF
    This study investigates the relation between distributed leadership, the cohesion of the leadership team, participative decision-making, context variables, and the organizational commitment and job satisfaction of teachers and teacher leaders. A questionnaire was administered to teachers and teacher leaders (n=1770) from 46 large secondary schools. Multiple regression analyses and path analyses revealed that the study variables explained significant variance in organizational commitment. The degree of explained variance for job satisfaction was considerably lower compared to organizational commitment. Most striking was that the cohesion of the leadership team and the amount of leadership support was strongly related to organizational commitment, and indirectly to job satisfaction. Decentralization of leadership functions was weakly related to organizational commitment and job satisfaction

    Driving the resonant quantum kicked rotor via extended initial conditions

    Full text link
    We study the resonances of the quantum kicked rotor subjected to an extended initial distribution. For the primary resonances we obtain the dispersion relation for the map of this system. We find an analytical dependence of the statistical moments on the shape of the initial distribution. For the secondary resonances we obtain numerically a similar dependence. This allows us to devise an extended initial condition which produces an average angular momentum pointing in a preset direction which increases with time with a preset ratio.Comment: 6 pages, 5 figures, send to EPJ
    corecore