313 research outputs found

    ESR evidence for disordered magnetic phase from ultra-small carbon nanotubes embedded in zeolite nanochannels

    Full text link
    A multi-frequency electron spin resonance (ESR) study provides evidence for the occurrence of low temperature ferromagnetic/spin-glass behavior in aligned arrays of sub-nanometer single walled carbon nanotubes confined in zeolite nano-channels, owing to sp2-type non-bonding carbon associated localized states with density of ~3 x 1019 /g. Features related to the much anticipated conduction ESR are not detected. In the paramagnetic phase, the ESR linewidth is found to be weakly dependent on microwave frequency.Comment: Accepted to be published in EuroPhysics Letter

    Lower Intrinsic ADP-Stimulated Mitochondrial Respiration Underlies In Vivo Mitochondrial Dysfunction in Muscle of Male Type 2 Diabetic Patients

    Get PDF
    OBJECTIVE—A lower in vivo mitochondrial function has been reported in both type 2 diabetic patients and first-degree relatives of type 2 diabetic patients. The nature of this reduction is unknown. Here, we tested the hypothesis that a lower intrinsic mitochondrial respiratory capacity may underlie lower in vivo mitochondrial function observed in diabetic patients

    ÎČ-delayed fission and α decay of At196

    Get PDF
    A nuclear-decay spectroscopy study of the neutron-deficient isotope At196 is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure α decay of At196 allowed the low-energy excited states in the daughter nucleus Bi192 to be investigated. A ÎČ-delayed fission study of At196 was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope Po196 (populated by ÎČ decay of At196) was deduced based on the measured fission-fragment energies. A ÎČDF probability PÎČDF(At196)=9(1)×10−5 was determined

    Charge radii and electromagnetic moments of 195-211At

    Get PDF
    Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α-decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in At197,199, for which a significant difference in the charge radii for ground (9/2-) and isomeric (1/2+) states has been observed

    Laser-assisted decay spectroscopy and mass spectrometry of 178Au^178Au

    Get PDF
    A comprehensive study of the isotope 178Au has been made at the CERN-ISOLDE facility, using resonance laser ionization. Two long-lived states in 178Au were identified—a low-spin ground state and a high-spin isomer—each of which were produced as pure beams. Using the ISOLTRAP precision Penning trap, the excitation energy of the isomeric state in 178Au was determined to be E∗=189(14)keV. The α-decay fine structure patterns of the two states were studied using the Windmill decay station, providing information on the low-lying states in the daughter nucleus 174Ir. Nuclear spin assignments of I(178Aug)=(2,3) and I(178Aum)=(7,8) are made based on the observed ÎČ-decay feeding and hyperfine structure intensity patterns. These spin assignments are used for fitting the hyperfine structures of the two states from which values for the magnetic dipole moments are extracted. The extracted moments are compared with calculations using additivity relations to establish the most probable configurations for 178Aug,m
    • 

    corecore