7,480 research outputs found
Carbon Distribution in the Stiliwater Complex and Evolution of Vapor During Crystallization of Stillwater and Bushveld Magmas
The occurrence and distribution of carbon in the Stillwater Complex have been investigated. In mineralized troctolite and associated rocks of olivine-bearing zone I (OB I), carbon is present as graphitic material and calcite. The assemblage forsterite-antigorite-calcite-graphite and the petro graphic relations indicate equilibration of the carbon-rich phases during serpentinization. Typical OB I troctolite contains 500-1100 ppm wt. carbon, 40-70% of which is in calcite, whereas troctolite from higher stratigraphic positions generally contains 2 log units below that of the Ni-NiO oxygen buffer. Upon the appearance of graphite, the fluid evolved to a more hydrogen-rich composition by graphite precipitation and loss of oxygen to the surrounding silicate-oxide assemblage. Cooling of fluid to 25°C below the first appearance of graphite resulted in reduction in the fluid mass by >70%, thus concentrating chlorine, sulfur and other residual species in the intercumulus fluid and melt. The model explains the presence of chlor-apatite and the enrichment of graphite in the Bushveld Critical Zone and predicts that chlor-apatite-bearing Stillwater rocks were similarly enriched in graphite during crystallizatio
Fast shower simulation in the ATLAS calorimeter
The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.
In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper
Gain properties of dye-doped polymer thin films
Hybrid pumping appears as a promising compromise in order to reach the much
coveted goal of an electrically pumped organic laser. In such configuration the
organic material is optically pumped by an electrically pumped inorganic device
on chip. This engineering solution requires therefore an optimization of the
organic gain medium under optical pumping. Here, we report a detailed study of
the gain features of dye-doped polymer thin films. In particular we introduce
the gain efficiency , in order to facilitate comparison between different
materials and experimental conditions. The gain efficiency was measured with
various setups (pump-probe amplification, variable stripe length method, laser
thresholds) in order to study several factors which modify the actual gain of a
layer, namely the confinement factor, the pump polarization, the molecular
anisotropy, and the re-absorption. For instance, for a 600 nm thick 5 wt\% DCM
doped PMMA layer, the different experimental approaches give a consistent value
80 cm.MW. On the contrary, the usual model predicting the gain
from the characteristics of the material leads to an overestimation by two
orders of magnitude, which raises a serious problem in the design of actual
devices. In this context, we demonstrate the feasibility to infer the gain
efficiency from the laser threshold of well-calibrated devices. Besides,
temporal measurements at the picosecond scale were carried out to support the
analysis.Comment: 15 pages, 17 figure
The ATLAS Simulation: an LHC Challenge
The simulation program for the ATLAS experiment at CERN is currently in a full operational mode and integrated into the ATLAS common analysis framework, Athena. The OO approach, based on GEANT4, and in use during the DC2 data challenge has been interfaced within Athena and to GEANT4 using the LCG dictionaries and Python scripting. The robustness of the application was proved during the DC2 data challenge. The Python interface has added the flexibility, modularity and interactivity that the simulation tool requires in order to be able to provide a common implementation of different full ATLAS simulation setups, test beams and cosmic ray applications. Generation, simulation and digitization steps were exercised for performance and robustness tests. The comparison with real data has been possible in the context of the ATLAS Combined Test Beam (2004) and ongoing cosmic ray studies
Properties of Healthcare Teaming Networks as a Function of Network Construction Algorithms
Network models of healthcare systems can be used to examine how providers
collaborate, communicate, refer patients to each other. Most healthcare service
network models have been constructed from patient claims data, using billing
claims to link patients with providers. The data sets can be quite large,
making standard methods for network construction computationally challenging
and thus requiring the use of alternate construction algorithms. While these
alternate methods have seen increasing use in generating healthcare networks,
there is little to no literature comparing the differences in the structural
properties of the generated networks. To address this issue, we compared the
properties of healthcare networks constructed using different algorithms and
the 2013 Medicare Part B outpatient claims data. Three different algorithms
were compared: binning, sliding frame, and trace-route. Unipartite networks
linking either providers or healthcare organizations by shared patients were
built using each method. We found that each algorithm produced networks with
substantially different topological properties. Provider networks adhered to a
power law, and organization networks to a power law with exponential cutoff.
Censoring networks to exclude edges with less than 11 shared patients, a common
de-identification practice for healthcare network data, markedly reduced edge
numbers and greatly altered measures of vertex prominence such as the
betweenness centrality. We identified patterns in the distance patients travel
between network providers, and most strikingly between providers in the
Northeast United States and Florida. We conclude that the choice of network
construction algorithm is critical for healthcare network analysis, and discuss
the implications for selecting the algorithm best suited to the type of
analysis to be performed.Comment: With links to comprehensive, high resolution figures and networks via
figshare.co
Growth and development rates of the copepod \u3cem\u3eCalanus finmarchicus\u3c/em\u3e reared in the laboratory
Development rates, nitrogen- and carbon-specific growth rates, size, and condition were determined for the copepod Calanus finmarchicus reared at 3 temperatures (4, 8, and 12°C) at non-limiting food concentrations and 2 limiting food concentrations at 8°C in the laboratory. Development rates were equiproportional, but not isochronal. Naupliar stage durations were similar, except for non-feeding stages, which were of short duration, and the first feeding stage, which was prolonged, while copepodite stage durations increased with increasing stage of development. Under limiting food concentrations at 8°C, development rates were prolonged but similar relative patterns in stage durations were observed. Body size (length and weight) was inversely related to temperature and positively related to food concentration. Condition measurements were not affected by temperature, but were positively related to food concentration. Growth rates increased with increasing temperature and increased asymptotically with increasing food concentration. At high food concentrations, growth rates of naupliar stages were high (except for individuals molting from the final naupliar stage to the first copepodite stage, in which growth rates were depressed), while growth of copepodites decreased with increasing stage of development. Neither nitrogen nor carbon growth rates, the former a proxy for structural growth, were exponential over the entire life cycle, but rather sigmoidal. Carbon-specific growth rates were greater than nitrogen-specific growth rates, and this difference increased with increasing stage of development, reflecting an augmentation in lipid deposition in the older stages. However, nitrogen and carbon growth rates were more similar under food-limited conditions. Based on this study, we recommend that secondary production rates of Calanus finmarchicus and possibly other lipid-storing copepods not be estimated from egg production measurements alone, as has been suggested for other species of copepods, because growth, including structural growth, is not equivalent for all stages
Impact of Seabed Resuspension on Oxygen and Nitrogen Dynamics in the Northern Gulf of Mexico: A Numerical Modeling Study
Resuspension affects water quality in coastal environments by entraining seabed organic matter into the water column, which can increase remineralization, alter seabed fluxes, decrease water clarity, and affect oxygen and nutrient dynamics. Nearly all numerical models of water column biogeochemistry, however, simplify seabed and bottom boundary layer processes and neglect resuspension. Here we implemented HydroBioSed, a coupled hydrodynamic-sediment transport-biogeochemical model to examine the role of resuspension in regulating oxygen and nitrogen dynamics on timescales of a day to a month. The model was implemented for the northern Gulf of Mexico, where the extent of summertime hypoxia is sensitive to seabed and bottom boundary layer processes. Results indicated that particulate organic matter remineralization in the bottom water column increased by an order of magnitude during resuspension events. This increased sediment oxygen consumption and ammonium production, which were defined as the sum of seabed fluxes of oxygen and ammonium, plus oxygen consumption and ammonium production in the water column due to resuspended organic matter. The increases in remineralization impacted biogeochemical dynamics to a greater extent than resuspension-induced seabed fluxes and oxidation of reduced chemical species. The effect of resuspension on bottom water biogeochemistry increased with particulate organic matter availability, which was modulated by sediment transport patterns. Overall, when averaged over the shelf and on timescales of a month in the numerical model, cycles of erosion and deposition accounted for about two thirds of sediment oxygen consumption and almost all of the sediment ammonium production. In coastal waters, oxygen and nitrogen levels affect the health of fish and other organisms. In the Gulf of Mexico, for example, low-oxygen regions called hypoxic areas or dead zones form in the summertime near the seabed in bottom water . It can be difficult to understand and quantify variations in bottom water oxygen and nitrogen levels, however, because: (1) water quality there is affected by many different physical and biological processes; and (2) observational studies are limited by cost, safety and technological advances. To complement previous observational studies, this paper used a new numerical modeling approach that accounts for many physical and biological processes in the seabed and water. Specifically, we used the model to evaluate how resuspension, especially the entrainment of organic matter from the seabed into the water, affected oxygen and nitrogen levels in the Northern Gulf of Mexico. Model results indicated that resuspension increased the decomposition of organic matter, decreasing oxygen levels and increasing ammonium (a form of nitrogen) levels in bottom water. This effect was largest in regions with abundant seabed organic matter and frequent resuspension. These modeling results can help scientists and environmental managers understand how resuspension affects oxygen and nitrogen levels in bottom waters
Pattern Analysis of Microtubule-Polymerizing and -Depolymerizing Agent Combinations as Cancer Chemotherapies
Subcellular distribution of mass can be analyzed by a technique that involves culturing cells on interferometers and digitizing their interference contours. Contour sampling resulted in 102 variables per cell, which were predictors of oncogenic transformation. Cell phenotypes can be deconstructed by use of latent factors, which represent the covariance of the real variables. The reversal of the cancertype phenotype by a combination of microtubule- stabilizing and -depolymerizing agents was described previously. The implications of these results have been explored by clinicians who treated patients with the combination of docetaxel and vinorelbine (Navelbine®). The current study was performed to determine the effects of different combinations on phenotype and in phases of the cell cycle other than mitosis. Combinations of paclitaxel with either colchicine, podophyllotoxin, nocodazole, or vinblastine caused phenotype reversal. Paclitaxel analogue, 7-deoxytaxol, by itself caused reversal. Factors #4, (filopodia), #5 (displacement and/or deep invaginations in the periphery), #8, and #12 took on values typical of normal cells, whereas the values of #7 (p21-activated kinase), and #13 (rounding up) shifted toward the cancer-type. All combinations altered microtubule arrangement at the cell edge. Delivery schedules and drug ratios used in clinical studies were subjected to analysis. Clinical response rates were better when the combination was not interspersed with a single agent (P=0.004). The results support the idea that efficacy depends upon simultaneous exposure to both agents, and suggest a novel mechanism for combination therapies. These therapies appear to restore in transformed cells some of the features of a contact-inhibited cell, and to impede progress through the cell cycle even when provided at nanomolar concentrations
HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells
The regulated recruitment and differentiation of multipotent bone marrow-derived cells (BMDCs) to sites of injury are critical for efficient wound healing. Previously we demonstrated that sustained expression of HOXA3 both accelerated wound healing and promoted angiogenesis in diabetic mice. In this study, we have used green fluorescent protein-positive bone marrow chimeras to investigate the effect of HOXA3 expression on recruitment of BMDCs to wounds. We hypothesized that the enhanced neovascularization induced by HOXA3 is due to enhanced mobilization, recruitment, and/or differentiation of BMDCs. Here we show that diabetic mice treated with HOXA3 displayed a significant increase in both mobilization and recruitment of endothelial progenitor cells compared with control mice. Importantly, we also found that HOXA3-treated mice had significantly fewer inflammatory cells recruited to the wound compared with control mice. Microarray analyses of HOXA3-treated wounds revealed that indeed HOXA3 locally increased expression of genes that selectively promote stem/progenitor cell mobilization and recruitment while also suppressing expression of numerous members of the proinflammatory nuclear factor κB pathway, including myeloid differentiation primary response gene 88 and toll-interacting protein. Thus HOXA3 accelerates wound repair by mobilizing endothelial progenitor cells and attenuating the excessive inflammatory response of chronic wounds
- …