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Abstract We write down the four-dimensional fully dif-
ferential decay distribution for the top quark decay t →
Wb → �νb. We discuss how its eight physical parameters
can be measured, either with a global fit or with the use
of selected one-dimensional distributions and asymmetries.
We give expressions for the top decay amplitudes for a gen-
eral tbW interaction, and show how the untangled measure-
ment of the two components of the fraction of longitudinal
W bosons – those with b quark helicities of 1/2 and −1/2,
respectively – could improve the precision of a global fit to
the tbW vertex.

1 Introduction

The detailed study of the properties of the top quark has a
widespread interest as a probe of new physics beyond the
Standard Model (SM) [1–3]. In hadron collisions top quarks
are produced in pairs, mediated by the QCD interaction, and
they are also singly produced via electroweak interactions –
setting aside other sub-dominant production mechanisms in
association with additional bosons γ , W , Z or H . In contrast,
the decay of the top (anti-)quarks is almost completely dom-
inated by the mode t → Wb, with the subsequent decays of
the W bosons into charged leptons, W → �ν, � = e, μ, τ ,
or into quarks, W → qq̄ ′.

The top decay differential distribution in t → Wb → �ν

is determined by four angles. The first two angles (θ, φ)

are the spherical coordinates of the W boson momentum in
the top quark rest frame, in some arbitrary reference system
(x, y, z). The remaining two angles (θ∗, φ∗) are the spher-
ical coordinates of the charged lepton momentum in the W
boson rest frame, in the reference system (x ′, y′, z′) obtained
by a “standard” boost from the previous one, such that the
ẑ′ axis is in the direction (θ, φ) of the W boson momen-
tum and the ŷ′ axis is in the xy plane (see for example

a e-mail: jaas@ugr.es

Ref. [4] for a detailed discussion). One-dimensional distri-
butions or asymmetries were already proposed long ago to
measure some physical quantities involved in the top decay,
such as the W helicity fractions, measured from the θ∗ dis-
tribution, or the top polarisation, measured from the θ and φ

distributions [5]. Since then, W helicity fractions have been
experimentally measured in a number of experiments, with
the most precise measurements obtained by the ATLAS [6]
and CMS [7] Collaborations, and the top polarisation in cer-
tain directions has also been measured in single top [8,9]
and top pair [10,11] production. Other angular distributions,
like the polar angle of the charged lepton in the top quark
rest frame [12], the azimuthal angle [13], and the azimuthal
angle in the laboratory frame [14], are also sensitive to top
polarisation effects.

More generally, it has been shown that the full set of eight
W boson spin observables can be measured from selected dis-
tributions in top quark decays [15], and preliminary measure-
ments have been performed by the ATLAS Collaboration [9].
Moreover, the large top samples available at the LHC Run 1
have allowed one to perform more demanding measurements,
such as the determination of the two-dimensional (θ∗, φ∗)
distribution by the ATLAS Collaboration in t-channel single
top production [16]. With the increased statistics at Run 2,
it is likely that measurements of the full four-angle distri-
bution, until recently unconceivable, will be achieved. The
aim of this work is to provide the framework for such mea-
surements and point out their advantages for a global fit of
the tbW vertex. We provide analytical expressions for the
fully differential distribution, show how to extract the rel-
evant information either directly or using suitable asymme-
tries, and relate the top decay amplitudes withW spin observ-
ables. Finally, we write the physical quantities involved in the
top decay for a general tbW effective Lagrangian, showing
that the untangled measurement of the two components of the
fraction of longitudinal W bosons may improve the precision
of the global fit.
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2 The fully differential distribution

Using the helicity formalism of Jacob and Wick [17], the
amplitude for the top decay t → Wb → �νb can be written,
in the narrow width approximation, as

AMλ2λ3λ4 =
∑

λ1

aλ1λ2bλ3λ4 D
1/2 ∗
M	 (φ, θ, 0) D1 ∗

λ1λ
(φ∗, θ∗, 0),

(1)

with λ1, λ2, λ3 and λ4 the helicities of the W boson, b quark,
charged lepton and neutrino, respectively, M the third spin
component of the top quark, and 	 = λ1 −λ2, λ = λ3 −λ4.
The angular dependence is given by the well-known Wigner
D functions [18]

D j
m′m(α, β, γ ) ≡ 〈 jm′|e−iα Jz e−iβ Jy e−iγ Jz | jm〉, (2)

and aλ1λ2 , bλ3λ4 are constants. For the top decay, angular
momentum conservation implies that there are only four non-
zero reduced amplitudes (or just “amplitudes” for short) a1 1

2
,

a0 1
2
, a0 − 1

2
and a−1 − 1

2
.1 The SM interaction of the W boson

with charged leptons implies λ3 = ±1/2, λ4 = ∓1/2 for
W± decays, assuming massless charged leptons. Therefore,
λ = 1 for top quarks, λ = −1 for top anti-quarks, and
there is only one non-zero b constant in each case, which
can be factored out and does not play any further role in the
distributions. Let us introduce a top spin density matrix

ρ = 1

2

(
1 + Pz Px − i Py
Px + i Py 1 − Pz

)
, (3)

in terms of the top (anti-)quark polarisation in the three axes,
Pi = 2〈Si 〉, with Si the spin operators. The normalised dif-
ferential decay width can be written, summing over b quark
helicities, as

1



d

d�d�∗ = 3

8π2

1

N
∑

MM ′λ1λ
′
1λ2

ρMM ′aλ1λ2a
∗
λ′

1λ2

×D1/2∗
M	 (φ, θ, 0)D1/2

M ′	′(φ, θ, 0)

×D1∗
λ1λ

(φ∗, θ∗, 0)D1
λ′

1λ
(φ∗, θ∗, 0), (4)

with d� = dφdcos θ , d�∗ = dφ∗dcos θ∗, 	′ = λ′
1 −λ2 and

N = |a1 1
2
|2 + |a0 1

2
|2 + |a0 − 1

2
|2 + |a−1 − 1

2
|2 (5)

the sum of the four non-vanishing amplitudes modulo
squared. There are only five independent real parameters

1 The amplitudes for top quark and anti-quark decays are not equal, but
for ease in the notation we denote them with the same symbols, until
Sect. 4 where we write explicit expressions for them.

determining the top decay distribution. One can define four
untangled helicity fractions,

F++ = |a1, 1
2
|2/N , F−− = |a−1,− 1

2
|2/N ,

F+
0 = |a0, 1

2
|2/N , F−

0 = |a0,− 1
2
|2/N ,

where F++ and F−− equal the usual helicity fractions F+ and
F−, that is, the relative fractions of W bosons with helicity
λ1 = 1 or λ1 = −1, respectively. We will thus drop the
superscript for these in the rest of the paper. The fraction of
W bosons with helicity λ1 = 0 is F0 = F+

0 + F−
0 . The frac-

tions F−+ and F+− , which would correspond to the amplitudes
a1 − 1

2
and a−1 1

2
, vanish at leading order (LO) due to angular

momentum conservation, and they are still extremely small
at next-to-leading order [19]. The untangled W helicity frac-
tions yield three independent parameters because their sum
equals unity. The remaining two parameters can be taken as
the phases of the only interference terms appearing in the
sum (4),

δ+ = arg a1 1
2
a∗

0 1
2
, δ− = arg a−1 − 1

2
a∗

0 − 1
2
. (6)

The property of the D functions

D j
m′m(α, β, γ )∗ = (−1)m−m′

D j
−m′−m(α, β, γ ) (7)

and the compostion rule in terms of Clebsch–Gordan coeffi-
cients
D j1
m′

1m1
(α, β, γ )D j2

m′
2m2

(α, β, γ )

=
j1+ j2∑

j=| j1− j2|
〈 j1m′

1 j2m
′
2| jm′〉〈 j1m1 j2m2| jm〉D j

m′m(α, β, γ )

(8)

guarantee that the four-dimensional distribution can be
expanded as a finite combination of the set of functions we
define as

M j1 j2
m′m (φ, θ, φ∗, θ∗) = 1

4π
(2 j1 + 1)1/2(2 j2 + 1)1/2

×D j1
m′m(φ, θ, 0)D j2

m0(φ
∗, θ∗, 0). (9)

As it is shown in Appendix A, these functions are orthonor-
mal. By writing the distribution as

1



d

d�d�∗ =
∑

j1 j2m′m
c j1 j2m′mM

j1 j2
m′m , (10)

we find that the non-zero coefficients in the expansion are

c00
00 = 1

4π
,

c10
00 = 1

4
√

3π
Pz

[
|a1 1

2
|2 − |a0 1

2
|2+|a0 − 1

2
|2−|a−1 − 1

2
|2

]
/N ,
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c10
10 = −(c10−10)

∗

= − 1

4
√

6π
(Px + i Py)

×
[
|a1 1

2
|2 − |a0 1

2
|2 + |a0 − 1

2
|2 − |a−1 − 1

2
|2

]
/N ,

c01
00 = λ

√
3

8π

[
|a1 1

2
|2 − |a−1 − 1

2
|2

]
/N ,

c11
00 = λ

1

8π
Pz

[
|a1 1

2
|2 + |a−1 − 1

2
|2

]
/N ,

c11
10 = −(c11−10)

∗

= −λ
1

8
√

2π
(Px + i Py)

[
|a1 1

2
|2 + |a−1 − 1

2
|2

]
/N ,

c11
01 = (c11

0−1)
∗ = λ

1

4
√

2π
Pz

[
a0 1

2
a∗

1 1
2

+ a−1 − 1
2
a∗

0 − 1
2

]
/N ,

c11
11 = −(c11−1−1)

∗

= −λ
1

8π
(Px + i Py)

[
a0 1

2
a∗

1 1
2

+ a−1 − 1
2
a∗

0 − 1
2

]
/N ,

c11
1−1 = −(c11−11)

∗

= −λ
1

8π
(Px + i Py)

[
a1 1

2
a∗

0 1
2

+ a0 − 1
2
a∗

−1 − 1
2

]
/N ,

c02
00 = 1

8
√

5π

×
[
|a1 1

2
|2 − 2|a0 1

2
|2 − 2|a0 − 1

2
|2 + |a−1 − 1

2
|2

]
/N ,

c12
00 = 1

8
√

15π
Pz

×
[
|a1 1

2
|2 + 2|a0 1

2
|2 − 2|a0 − 1

2
|2 − |a−1 − 1

2
|2

]
/N ,

c12
10 = −(c12−10)

∗ = − 1

8
√

30π
(Px + i Py)

×
[
|a1 1

2
|2 + 2|a0 1

2
|2 − 2|a0 − 1

2
|2 − |a−1 − 1

2
|2

]
/N ,

c12
01 = (c12

0−1)
∗ = 1

4
√

10π
Pz

[
a0 1

2
a∗

1 1
2

− a−1 − 1
2
a∗

0 − 1
2

]
/N ,

c12
11 = −(c12−1−1)

∗

= − 1

8
√

5π
(Px + i Py)

[
a0 1

2
a∗

1 1
2

− a−1 − 1
2
a∗

0 − 1
2

]
/N ,

c12
1−1 = −(c12−11)

∗

= − 1

8
√

5π
(Px + i Py)

[
a1 1

2
a∗

0 1
2

− a0 − 1
2
a∗

−1 − 1
2

]
/N .

(11)

Because of the orthonormality of the M functions, the dif-
ferent coefficients can be determined by projecting the dif-
ferential distribution g(φ, θ, φ∗, θ∗) ≡ (1/)d/d�d�∗,

c j1 j2m′m =
∫

d�d�∗g(φ, θ, φ∗, θ∗)M j1 j2
m′m (φ, θ, φ∗, θ∗)∗.

(12)

The Monte Carlo estimate of the integral is the average of
the function (M j1 j2

m′m )∗ over a selected set of points, given by a
probability density function g. Therefore, with real data, the
estimate of the coefficients c j1 j2m′m is simply done by comput-

ing the average of (M j1 j2
m′m )∗ over the dataset [20], properly

corrected for detector effects [21]. The statistical error on
the coefficients, and the covariance matrix between different
coefficients, can easily be estimated simply by taking aver-
ages of the product of M functions.

3 Physics parameters from asymmetries

The set of coefficients c j1 j2m′m allows one to extract the three top
polarisation components and the five physical parameters in
the decay of the top quark at the same time. Alternatively,
one can measure them using asymmetries or one-dimensional
distributions. Using the explicit expressions for the D func-
tions, one can compactly write the fully differential distribu-
tion in terms of the four angles as

1



d

d�d�∗

= 3

64π2

1

N
{[

|a1 1
2
|2 (

1 + λ cos θ∗)2 + 2|a0 − 1
2
|2 sin2 θ∗]

(
1 + 
P · 
uL

)

+
[
2|a0 1

2
|2 sin2 θ∗ + |a−1 − 1

2
|2 (

1 − λ cos θ∗)2
]

×
(

1 − 
P · 
uL
)

+ λ2
√

2
[
Re(a0 1

2
a∗

1 1
2
e−iφ∗

)(1 + λ cos θ∗)

+ Re(a−1 − 1
2
a∗

0 − 1
2
e−iφ∗

)(1 − λ cos θ∗)
]

sin θ∗ 
P · 
uT
+λ2

√
2

[
Im(a0 1

2
a∗

1 1
2
e−iφ∗

)(1 + λ cos θ∗)

+ Im(a−1 − 1
2
a∗

0 − 1
2
e−iφ∗

)(1 − λ cos θ∗)
]

sin θ∗ 
P · 
uN

}
.

(13)

Here, 
uL = (sin θ cos φ, sin θ sin φ, cos θ) is the unit vector
in the direction of the W boson momentum in the top quark
rest frame, and 
uT = (cos θ cos φ, cos θ sin φ,− sin θ),

uN = (sin φ,− cos φ, 0) are two orthonormal vectors. As
before, λ = 1 for top quarks and λ = −1 for anti-quarks.
The explicit expression above suggests the observables one
has to use to extract the desired quantities. First, as mentioned
above, the (entangled) W helicity fractions are

F+ = |a1 1
2
|2/N , F− = |a−1 − 1

2
|2/N ,

F0 =
[
|a0 1

2
|2 + |a0 − 1

2
|2

]
/N , (14)

and they can be determined from the θ∗ distribution [5]. In
order to measure the top polarisation, one can use the dou-
ble forward–backward (FB) asymmetry defined in [22] and
analogous ones for the x̂ and ŷ axes,

123



200 Page 4 of 8 Eur. Phys. J. C (2017) 77 :200

Az,z′,
FB = 1



[
(cos θ cos θ∗ > 0) − (cos θ cos θ∗ < 0)

]

= λ
3

8
Pz

[
|a1 1

2
|2 + |a−1 − 1

2
|2

] /N ,

Ax,z′
FB = 1



[
(cos φ cos θ∗ > 0) − (cos φ cos θ∗ < 0)

]

= λ
3

8
Px

[
|a1 1

2
|2 + |a−1 − 1

2
|2

] /N ,

Ay,z′
FB = 1



[
(sin φ cos θ∗ > 0) − (sin φ cos θ∗ < 0)

]

= λ
3

8
Py

[
|a1 1

2
|2 + |a−1 − 1

2
|2

] /N , (15)

since the factor between brackets is merely the sum of F+
and F−. The two squared moduli of λ1 = 0 amplitudes,
whose sum appears in F0, can be disentangled by a forward–
backward–edge–central asymmetry, defined as

Az,z′
FB,EC = 1



[
(cos θ(| cos θ∗| − t) > 0)

− (cos θ(| cos θ∗| − t) < 0)
]

= 3

2
(2t − 1)Pz

[
|a0 1

2
|2 − |a0 − 1

2
|2

] /N , (16)

with t = (1 + √
2)1/3 − (1 + √

2)−1/3 � 0.6. Alternatively,
we point out that the W boson spin analysing power αW or,
equivalently, the FB asymmetry in cos θ ,

Az
FB = 1


[(cos θ > 0) − (cos θ < 0)] ≡ 1

2
PzαW

= 1

2
Pz

[
|a1 1

2
|2 − |a0 1

2
|2 + |a0 − 1

2
|2 − |a−1 − 1

2
|2

] /N
(17)

is also sensitive to the difference |a0 1
2
|2 −|a0 − 1

2
|2. We point

out that measuring the untangled helicity fractions F+
0 , F−

0
requires polarised top quarks, as is also seen from the expres-
sions of c j1 j2m′m . The relative phases of the interfering ampli-
tudes can be extracted from FB and double FB asymmetries,

Ax ′
FB = 1



[
(cos φ∗ > 0) − (cos φ∗ < 0)

]

= 3π

8
√

2
Pz Re

[
a0 1

2
a∗

1 1
2

+ a−1 − 1
2
a∗

0 − 1
2

]
/N ,

Ay′
FB = 1



[
(sin φ∗ > 0) − (sin φ∗ < 0)

]

= 3π

8
√

2
Pz Im

[
a0 1

2
a∗

1 1
2

+ a−1 − 1
2
a∗

0 − 1
2

] /N ,

Ax ′,z′
FB = 1



[
(cos φ∗ cos θ∗ > 0) − (cos φ∗ cos θ∗ < 0)

]

= λ
1

2
√

2
Pz Re

[
a0 1

2
a∗

1 1
2

− a−1 − 1
2
a∗

0 − 1
2

] /N ,

Ay′,z′
FB = 1



[
(sin φ∗ cos θ∗ > 0) − (sin φ∗ cos θ∗ < 0)

]

= λ
1

2
√

2
Pz Im

[
a0 1

2
a∗

1 1
2

− a−1 − 1
2
a∗

0 − 1
2

] /N . (18)

As is apparent from the above equations, the introduction of
a FB asymmetry in cos θ∗ allows one to flip the sign of the
latter terms between brackets, allowing to measure the real
and imaginary parts of each product independently. Again,
polarised top quarks are required to measure the quantities,
as otherwise there is no privileged direction in the W boson
rest frame other than the ẑ′ axis. For completeness, we also
give the relation between the eight W spin observables [15]
and top decay amplitudes. They are

〈S1〉 = λ
4

3
Ax ′

FB = λ
π

2
√

2
Pz Re

[
a0 1

2
a∗

1 1
2

+ a−1 − 1
2
a∗

0 − 1
2

]
/N ,

〈S2〉 = λ
4

3
Ay′

FB = λ
π

2
√

2
Pz Im

[
a0 1

2
a∗

1 1
2

+ a−1 − 1
2
a∗

0 − 1
2

]
/N ,

〈S3〉 = F+ − F− =
[
|a1 1

2
|2 − |a−1 − 1

2
|2

]
/N ,

〈T0〉 = 1√
6

[
|a1 1

2
|2 − 2|a0 1

2
|2 − 2|a0 − 1

2
|2 + |a−1 − 1

2
|2

]
/N ,

〈A1〉 = −π

2
Ax ′z′

FB

= −λ
π

4
√

2
Pz Re

[
a0 1

2
a∗

1 1
2

− a−1 − 1
2
a∗

0 − 1
2

]
/N ,

〈A2〉 = −π

2
Ay′z′

FB

= −λ
π

4
√

2
Pz Im

[
a0 1

2
a∗

1 1
2

− a−1 − 1
2
a∗

0 − 1
2

]
/N , (19)

with 〈B1〉 = 〈B2〉 = 0 due to angular momentum conserva-
tion.

Finally, let us stress that the global approach in Eqs. (10)–
(12) and the use of selected observables (14)–(18) are for-
mally equivalent. In particular, some of the asymmetries have
a direct relation to coefficients in the expansion,

Az,z′
FB = 3πc11

00, Ax,z′
FB = −3

√
2π Re c11

10,

Ax,z′
FB = −3

√
2π Im c11

10,

Az
FB = 2

√
3πc10

00, Ax ′
FB = λ

3π2

2
Re c11

01,

Ay′
FB = λ

3π2

2
Im c11

01,

Ax ′z′
FB = λ2

√
5π Re c12

01, Ay′z′
FB = λ2

√
5π Im c12

01. (20)

However, the calculation of the correlation between observ-
ables, which is necessary to include all of them in a global fit,
seems easier with the global approach. Whether one method
or the other gives more precise results has to be determined
with an analysis including all systematic uncertainties.

4 Physics parameters and the tbW interaction

The measurement of the top decay amplitudes aλ1λ2 can be
interpreted in terms of limits on anomalous tbW interactions.
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The most general effective tbW interaction arising from the
addition of dimension-six operators to the SM Lagrangian
can be parameterised as [23]

LWtb = − g√
2
b̄ γ μ (VL PL + VR PR) t W−

μ

− g√
2
b̄
iσμνqν

MW
(gL PL + gR PR) t W−

μ + h.c.,

(21)

using standard notation, with g the electroweak coupling,
MW theW boson mass and qν its four-momentum. In the SM,
VL equals the Cabibbo–Kobayashi–Maskawa matrix element
Vtb � 1, and the rest of couplings VR , gL and gR vanish at
the tree level. For this general vertex, expressions of the W
boson spin density matrix have been obtained in Ref. [24].
Matching our general expressions for the top decay ampli-
tudes, obtained by general angular momentum conservation
arguments, with the explicit calculations there, we obtain for
top quarks

|a1 1
2
|2 = B0 + 2

|
q|
mt

B1, |a−1 − 1
2
|2 = B0 − 2

|
q|
mt

B1,

|a0 1
2
|2 = 1

2
A0 − |
q|

mt
A1, |a0 − 1

2
|2 = 1

2
A0 + |
q|

mt
A1,

a0 1
2
a∗

1 1
2

= mt√
2MW

(C0 − iD0) + |
q|√
2MW

(C1 − iD1),

a0 − 1
2
a∗

−1 − 1
2

= mt√
2MW

(C0 − iD0) − |
q|√
2MW

(C1 − iD1),

(22)

up to a global normalisation factor that is irrelevant. Here,
mt is the top quark mass and |
q| the modulus of the W boson
three-momentum in the top quark rest frame. The form fac-
tors A0,1, B0,1, C0,1 and D0,1 depend on the couplings in
(21) and are given in Appendix B for completeness. For top
anti-quarks the decay amplitudes (denoted here by a bar) are
related to the top quark ones by

|ā1 1
2
|2 = |a−1 − 1

2
|2, |ā−1 − 1

2
|2 = |a1 1

2
|2,

|ā0 1
2
|2 = |a0 − 1

2
|2, |ā0 − 1

2
|2 = |a0 1

2
|2,

ā0 1
2
ā∗

1 1
2

=
(
a0 − 1

2
a∗

−1 − 1
2

)∗
, ā0 − 1

2
ā∗

−1 − 1
2
=

(
a0 1

2
a∗

1 1
2

)∗
.

(23)

It is well known [25] that there is a cancellation between
anomalous contributions to helicity fractions when MWVR �
mtgL , as well as when MWVL � mtgR . This cancellation
stems from the Gordon identities that one can write for on-
shell t and b quarks,

b̄(pb)
[
iσμν(pt − pb)ν PL + mtγ

μPR + mbγ
μPL

]
t (pt )

= b̄(pb)(pt + pb)
μPLt (pt ),

b̄(pb)
[
iσμν(pt − pb)ν PR + mtγ

μPL + mbγ
μPR

]
t (pt )

= b̄(pb)(pt + pb)
μPRt (pt ). (24)

Neglecting the b quark mass, the combinations of couplings
with MWVR = mtgL or MWVL = mtgR are equivalent
to an interaction of the type (pt + pb)μPL ,R , which does
not contribute for any element of the W boson spin density
matrix except for λ1 = λ′

1 = 0, because the product of pb
with the W polarisation vectors of helicities ±1 vanishes.2

Therefore, the effect in the W spin observables is residual,
and given by the change in the partial width to λ1 = 0 states.
The cancellation is apparent if we define new couplings η1,2,
ζ1,2 as unitary rotations of the ones in (21),

(
VR

gL

)
= 1

(m2
t + M2

W )1/2

(
mt −MW

MW mt

) (
η1

ζ1

)
,

(
VL

gR

)
= 1

(m2
t + M2

W )1/2

(
mt −MW

MW mt

) (
η2

ζ2

)
. (25)

The dependence of the helicity fractions on η1 and ζ1, for
VL = 1 and gR = 0, is depicted in Fig. 1, at LO. (Next-
to-next-to-leading order calculations of the helicity fractions
are available [26], but since the difference with LO is smaller
than the experimental uncertainty, we use the latter for con-
sistency.) The helicity fractions are rather insensitive to η1, or,
in other words, a combination with ζ1 = 0 (MWVR = mtgL )
gives a very small effect. The remaining W boson spin
observables exhibit the same behaviour.

This can also be seen analytically. Neglecting the b quark
mass, the form factors in Appendix B read

A0 = m2
t − M2

W

m2
t M

2
W (m2

t + M2
W )

∣∣∣(m2
t − M2

W )η1 − 2mtMW ζ1

∣∣∣
2

+ (1 → 2),

A1 = − 1

M2
W (m2

t + M2
W )

∣∣∣(m2
t − M2

W )η1 − 2mtMW ζ1

∣∣∣
2

− (1 → 2),

B0 = m4
t − M4

W

m2
t M

2
W

|ζ1|2 + (1 → 2),

B1 = m2
t + M2

W

M2
W

|ζ1|2 − (1 → 2),

C0 = m2
t − M2

W

m2
t

[
2 |ζ1|2 − m2

t − M2
W

mtMW
Re ζ1η

∗
1

]

+ (1 → 2),

2 Interactions of this type arise from the dimension-six effective oper-
ators Oi j

Du , Oi j
D̄u

, Oi j
Dd and Oi j

D̄d
, which were shown to be redundant

in Ref. [23]. Therefore, the insensitivity to these combinations of cou-
plings can be viewed as insensitivity to these effective operators.
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Fig. 1 Dependence of the helicity fractions on the parameters η1 and ζ1 defined in Eq. (25). The dashed lines and shaded band represent the
current most precise measurements [6] and their uncertainty
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Fig. 2 Dependence of the asymmetry Az,z′
FB,EC on the parameters η1 and

ζ1 defined in Eq. (25)

C1 = 2

[
2 |ζ1|2 − m2

t − M2
W

mtMW
Re ζ1η

∗
1

]
− (1 → 2),

D0 = − (m2
t − M2

W )2

m3
t MW

Im ζ1η
∗
1 + (1 → 2),

D1 = −2
m2

t − M2
W

mtMW
Im ζ1η

∗
1 − (1 → 2). (26)

We observe that, for ζ1 = 0, the anomalous contributions
from η1 to the B0,1, C0,1 and D0,1 form factors vanish, in
agreement with our previous argument, but for A0 and A1,
precisely the form factors involved in F+

0 and F−
0 , they

do not. Therefore, the measurement of these two untangled
helicity fractions, for example using Az,z′

FB,EC, can break the
degeneracy. For illustration, we plot in Fig. 2 the dependence
of Az,z′

FB,EC on η1 and ζ1, for VL = 1 and gR = 0. There is
a sharp difference with the helicity fractions, and for this
asymmetry the variations with η1 and ζ1 are similar. The
same information can of course be obtained, in the global
analysis, by the measurement of c10

00 and c12
00.

5 Summary

In this work we have set the framework to extract all the rel-
evant physical quantities from the measurement of the four-
dimensional top decay distribution, that is, the top polarisa-
tion in three orthogonal directions and the five parameters
determining the top decay distributions. Such demanding
measurements may be possible in the near future with the
LHC Run 2 data. With the full distribution, or with a suitable
forward–backward–edge–central asymmetry, it will be pos-
sible to measure the two λ1 = 0 untangled W boson helicity
fractions F+

0 and F−
0 . The precision of the global fit to the

tbW vertex might be substantially improved if these untan-
gled helicity fractions are accurately measured in upcoming
analyses.
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Appendix A: Orthonormality of the M functions

The functions D j
m′m(φ, θ, 0) with the third argument set to

zero are not orthogonal when integrated with respect to d�;
rather, orthogonality holds for the functions D j

m′m(α, β, γ )

when integrated over the three angles. However, the M func-
tions defined in (9) are orthogonal because the second index
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in the first D function is precisely the first index in the second
D function. Explicitly, we have

∫
d�d�∗M j1 j2

rs (M
j ′1 j ′2
r ′s′ )∗

= 1

16π2

[
(2 j1 + 1)(2 j ′1 + 1)(2 j2 + 1)(2 j ′2 + 1)

]1/2

×
∫

dφdφ∗eiφ(r ′−r)eiφ
∗(s′−s)

×
∫

dcos θdcos θ∗d j1
rs (θ)d

j ′1
r ′s′(θ)d j2

s0(θ∗)d j ′2
s′0(θ

∗)

= 1

4

[
(2 j1 + 1)(2 j ′1 + 1)(2 j2 + 1)(2 j ′2 + 1)

]1/2
δrr ′δss′

×
∫

dcos θdcos θ∗d j1
rs (θ)d

j ′1
rs (θ)d j2

s0(θ∗)d j2
s0(θ∗), (27)

with d j
m′m(β) ≡ 〈 jm′|e−iβ Jy | jm〉 the small d Wigner func-

tions, which are real, and satisfy

∫
dcos θd j

m′m(θ)d j ′
m′m(θ) = 2

2 j + 1
δ j j ′ . (28)

Using (28), one easily arrives at

∫
d�d�∗M j1 j2

rs (M
j ′1 j ′2
r ′s′ )∗ = δ j1 j ′1δ j2 j ′2δrr ′δss′ . (29)

Appendix B: Expressions for top decay form factors

We collect here the expressions for the eight dimensionless
form factors involved in the decay t → Wb for a general
tbW vertex, from Ref. [24]. Defining xW = MW /mt , xb =
mb/mt , with mb the b quark mass, they are

A0 = m2
t

M2
W

[
|VL |2 + |VR |2

] (
1 − x2

W

)

+
[
|gL |2 + |gR|2

] (
1 − x2

W

)

− 4xb Re
[
VLV

∗
R + gLg

∗
R

]

− 2
mt

MW
Re

[
VLg

∗
R + VRg

∗
L

] (
1 − x2

W

)

+ 2
mt

MW
xb Re

[
VLg

∗
L + VRg

∗
R

] (
1 + x2

W

)
,

A1 = m2
t

M2
W

[
|VL |2 − |VR |2

]
−

[
|gL |2 − |gR|2

]

− 2
mt

MW
Re

[
VLg

∗
R − VRg

∗
L

]

+ 2
mt

MW
xb Re

[
VLg

∗
L − VRg

∗
R

]
,

B0 =
[
|VL |2 + |VR |2

] (
1 − x2

W

)

+ m2
t

M2
W

[
|gL |2 + |gR|2

] (
1 − x2

W

)

− 4xb Re
[
VLV

∗
R + gLg

∗
R

]

− 2
mt

MW
Re

[
VLg

∗
R + VRg

∗
L

] (
1 − x2

W

)

+ 2
mt

MW
xb Re

[
VLg

∗
L + VRg

∗
R

] (
1 + x2

W

)
,

B1 = −
[
|VL |2 − |VR |2

]
+ m2

t

M2
W

[
|gL |2 − |gR|2

]

+ 2
mt

MW
Re

[
VLg

∗
R − VRg

∗
L

]

+ 2
mt

MW
xb Re

[
VLg

∗
L − VRg

∗
R

]
,

C0 =
[
|VL |2 + |VR |2 + |gL |2 + |gR|2

] (
1 − x2

W

)

− 2xb Re
[
VLV

∗
R + gLg

∗
R

] (
1 + x2

W

)

− mt

MW
Re

[
VLg

∗
R + VRg

∗
L

] (
1 − x4

W

)

+ 4xW xb Re
[
VLg

∗
L + VRg

∗
R

]
,

C1 = 2
[
−|VL |2 + |VR |2 + |gL |2 − |gR|2

]

+ 2
mt

MW
Re

[
VLg

∗
R − VRg

∗
L

] (
1 + x2

W

)
,

D0 = mt

MW
Im

[
VLg

∗
R + VRg

∗
L

] (
1 − 2x2

W + x4
W

)
,

D1 = −4xb Im
[
VLV

∗
R + gLg

∗
R

]

− 2
mt

MW
Im

[
VLg

∗
R − VRg

∗
L

]
(1 − x2

W ). (30)
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