107 research outputs found

    ATP-Induced Nuclear and Cytosolic Ca2+ Signal in Various Stages of Interphase HeLa/Fucci2 Cell

    Get PDF
    Cell cycle progression involves the coordination of growth, DNA replication and division in proliferating cells. These intracellular activities are linked with calcium signaling in which calcium ion (Ca2+) act as a second messenger or as an agent for phosphorylation processes. Previous studies have examined the Ca2+ in the dividing cells; however, none of these gave the detailed explanation on Ca2+ dynamics in an interphase cell. This study addresses here the issue of whether the nuclear and cytosolic Ca2+ concentrations ([Ca2+]n and [Ca2+]c) changes ar

    Hybrid Water Pump

    Get PDF
    This project seeks to use multiple sources to power a water pump. We will design a system which will combine inputs from solar and wind energy production to ensure the pump will have enough power to run. This will create a system powered by clean energy and will be self-sustained once completed. This will theoretically create a more sustainable source of power for the pump than only one of the sources. Because the power sources don’t require outside inputs (aside from sun and wind), the pump can be placed in a remote area. This could be very helpful in developing communities, where residents may not have a reliable power supply. This system will allow these types of communities to pump water from wells to bring back to their homes. This will also reduce dependence on non-renewable sources of energy. The system will consist of a solar panel, wind turbine, control system to integrate the sources, and the water pump. The system will be made to require minimal user input to run. Inside the control system, two DC-DC buck converters are used to regulate input voltages. Two diodes are used to joint 2 input sources and prevent backflow of energy. This method is selected instead of MISO (Multiple Inputs Single Output) converter due to its simplicity. An Arduino Uno microcontroller powered by AtMega328p microprocessor is used for displaying power reading from the two sources and the load. The microcontroller also control the relay for protection purposes. An adjustable speed drive and motors combination is studied and used for simulating the wind turbine generation. Relays and circuit breakers are also studied for circuit protection in renewable power systems. This project showcase the possibility of having a hybrid renewable system for common electrical appliances as well as pointing out some difficulties in such system

    Metamagnetic Quantum Criticality

    Full text link
    A renormalization group treatment of metamagnetic quantum criticality in metals is presented. In clean systems the universality class is found to be of the overdamped, conserving (dynamical exponent z=3) Ising type. Detailed results are obtained for the field and temperature dependence of physical quantities including the differential susceptibility, resistivity and specific heat near the transition. An application of the theory is made to Sr3Ru2O7, which appears to exhibit a metamagnetic critical end-point at a very low temperature and a field of order 5-7T.Comment: 4 pages latex (Revtex 4) and 3 eps figure

    Comprehensive analysis of human microRNA target networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) mediate posttranscriptional regulation of protein-coding genes by binding to the 3' untranslated region of target mRNAs, leading to translational inhibition, mRNA destabilization or degradation, depending on the degree of sequence complementarity. In general, a single miRNA concurrently downregulates hundreds of target mRNAs. Thus, miRNAs play a key role in fine-tuning of diverse cellular functions, such as development, differentiation, proliferation, apoptosis and metabolism. However, it remains to be fully elucidated whether a set of miRNA target genes regulated by an individual miRNA in the whole human microRNAome generally constitute the biological network of functionally-associated molecules or simply reflect a random set of functionally-independent genes.</p> <p>Methods</p> <p>The complete set of human miRNAs was downloaded from miRBase Release 16. We explored target genes of individual miRNA by using the Diana-microT 3.0 target prediction program, and selected the genes with the miTG score ≧ 20 as the set of highly reliable targets. Then, Entrez Gene IDs of miRNA target genes were uploaded onto KeyMolnet, a tool for analyzing molecular interactions on the comprehensive knowledgebase by the neighboring network-search algorithm. The generated network, compared side by side with human canonical networks of the KeyMolnet library, composed of 430 pathways, 885 diseases, and 208 pathological events, enabled us to identify the canonical network with the most significant relevance to the extracted network.</p> <p>Results</p> <p>Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted reliable targets from 273 miRNAs. Among them, KeyMolnet successfully extracted molecular networks from 232 miRNAs. The most relevant pathway is transcriptional regulation by transcription factors RB/E2F, the disease is adult T cell lymphoma/leukemia, and the pathological event is cancer.</p> <p>Conclusion</p> <p>The predicted targets derived from approximately 20% of all human miRNAs constructed biologically meaningful molecular networks, supporting the view that a set of miRNA targets regulated by a single miRNA generally constitute the biological network of functionally-associated molecules in human cells.</p

    Microarray analysis identifies a set of CXCR3 and CCR2 ligand chemokines as early IFNβ-responsive genes in peripheral blood lymphocytes in vitro: an implication for IFNβ-related adverse effects in multiple sclerosis

    Get PDF
    BACKGROUND: A substantial proportion of multiple sclerosis (MS) patients discontinue interferon-beta (IFNβ) treatment due to various adverse effects, most of which emerge at the early phase after initiation of the treatment and then diminish with time. At present, the molecular mechanism underlying IFNβ-related adverse effects remains largely unknown. The aim of this study is to identify a comprehensive list of early IFNβ-responsive genes (IRGs) in peripheral blood mononuclear cells (PBMC) that may play a key role in induction of adverse effects. METHODS: Total RNA of PBMC exposed to 50 ng/ml recombinant human IFNβ for 3 to 24 hours in vitro was processed for cDNA microarray analysis, followed by quantitative real-time RT-PCR analysis. RESULTS: Among 1,258 genes on the array, IFNβ elevated the expression of 107 and 87 genes, while it reduced the expression of 22 and 23 genes at 3 and 24 hours, respectively. Upregulated IRGs were categorized into conventional IFN-response markers, components of IFN-signaling pathways, chemokines, cytokines, growth factors, and their receptors, regulators of apoptosis, DNA damage, and cell cycle, heat shock proteins, and costimulatory and adhesion molecules. IFNβ markedly upregulated CXCR3 ligand chemokines (SCYB11, SCYB10 and SCYB9) chiefly active on effector T helper type 1 (Th1) T cells, and CCR2 ligand chemokines (SCYA8 and SCYA2) effective on monocytes, whereas it downregulated CXCR2 ligand chemokines (SCYB2, SCYB1 and IL8) primarily active on neutrophils. CONCLUSION: IFNβ immediately induces a burst of gene expression of proinflammatory chemokines in vitro that have potential relevance to IFNβ-related early adverse effects in MS patients in vivo

    Close association of water channel AQP1 with amyloid-β deposition in Alzheimer disease brains

    Get PDF
    Aquaporin-1 (AQP1), a membrane water channel protein, is expressed exclusively in the choroid plexus epithelium in the central nervous system under physiological conditions. However, AQP1 expression is enhanced in reactive astrocytes, accumulating in brain lesions of Creutzfeldt-Jakob disease and multiple sclerosis, suggesting a role of AQP1-expressing astrocytes in brain water homeostasis under pathological conditions. To clarify a pathological implication of AQP1 in Alzheimer disease (AD), we investigated the possible relationship between amyloid-beta (Aβ) deposition and astrocytic AQP1 expression in the motor cortex and hippocampus of 11 AD patients and 16 age-matched other neurological disease cases. In all cases, AQP1 was expressed exclusively in a subpopulation of multipolar fibrillary astrocytes. The great majority of AQP1-expressing astrocytes were located either on the top of or in close proximity to Aβ plaques in AD brains but not in non-AD cases, whereas those independent of Aβ deposition were found predominantly in non-AD brains. By Western blot, cultured human astrocytes constitutively expressed AQP1, and the levels of AQP1 protein expression were not affected by exposure to Aβ1-42 peptide, but were elevated by hypertonic sodium chloride. By immunoprecipitation, the C-terminal fragment-beta (CTFβ) of amyloid precursor protein interacted with the N-terminal half of AQP1 spanning the transmembrane helices H1, H2 and H3. These observations suggest the possible association of astrocytic AQP1 with Aβ deposition in AD brains

    Increasing consistency of disease biomarker prediction across datasets

    Get PDF
    Microarray studies with human subjects often have limited sample sizes which hampers the ability to detect reliable biomarkers associated with disease and motivates the need to aggregate data across studies. However, human gene expression measurements may be influenced by many non-random factors such as genetics, sample preparations, and tissue heterogeneity. These factors can contribute to a lack of agreement among related studies, limiting the utility of their aggregation. We show that it is feasible to carry out an automatic correction of individual datasets to reduce the effect of such 'latent variables' (without prior knowledge of the variables) in such a way that datasets addressing the same condition show better agreement once each is corrected. We build our approach on the method of surrogate variable analysis but we demonstrate that the original algorithm is unsuitable for the analysis of human tissue samples that are mixtures of different cell types. We propose a modification to SVA that is crucial to obtaining the improvement in agreement that we observe. We develop our method on a compendium of multiple sclerosis data and verify it on an independent compendium of Parkinson's disease datasets. In both cases, we show that our method is able to improve agreement across varying study designs, platforms, and tissues. This approach has the potential for wide applicability to any field where lack of inter-study agreement has been a concern. © 2014 Chikina, Sealfon

    EWS/ETS Regulates the Expression of the Dickkopf Family in Ewing Family Tumor Cells

    Get PDF
    BACKGROUND: The Dickkopf (DKK) family comprises a set of proteins that function as regulators of Wnt/beta-catenin signaling and has a crucial role in development. Recent studies have revealed the involvement of this family in tumorigenesis, however their role in tumorigenesis is still remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: We found increased expression of DKK2 but decreased expression of DKK1 in Ewing family tumor (EFT) cells. We showed that EFT-specific EWS/ETS fusion proteins enhance the DKK2 promoter activity, but not DKK1 promoter activity, via ets binding sites (EBSs) in the 5' upstream region. EWS/ETS-mediated transactivation of the promoter was suppressed by the deletion and mutation of EBSs located upstream of the DKK2 gene. Interestingly, the inducible expression of EWS/ETS resulted in the strong induction of DKK2 expression and inhibition of DKK1 expression in human primary mesenchymal progenitor cells that are thought to be a candidate of cell origin of EFT. In addition, using an EFT cell line SK-ES1 cells, we also demonstrated that the expression of DKK1 and DKK2 is mutually exclusive, and the ectopic expression of DKK1, but not DKK2, resulted in the suppression of tumor growth in immuno-deficient mice. CONCLUSIONS/SIGNIFICANCE: Our results suggested that DKK2 could not functionally substitute for DKK1 tumor-suppressive effect in EFT. Given the mutually exclusive expression of DKK1 and DKK2, EWS/ETS regulates the transcription of the DKK family, and the EWS/ETS-mediated DKK2 up-regulation could affect the tumorigenicity of EFT in an indirect manner

    Gene Organization in Rice Revealed by Full-Length cDNA Mapping and Gene Expression Analysis through Microarray

    Get PDF
    Rice (Oryza sativa L.) is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA) sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE) genes, 33K annotated non-expressed (ANE) genes, and 5.5K non-annotated expressed (NAE) genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
    corecore