3,208 research outputs found

    Acoustic Integrity Codes: Secure Device Pairing Using Short-Range Acoustic Communication

    Full text link
    Secure Device Pairing (SDP) relies on an out-of-band channel to authenticate devices. This requires a common hardware interface, which limits the use of existing SDP systems. We propose to use short-range acoustic communication for the initial pairing. Audio hardware is commonly available on existing off-the-shelf devices and can be accessed from user space without requiring firmware or hardware modifications. We improve upon previous approaches by designing Acoustic Integrity Codes (AICs): a modulation scheme that provides message authentication on the acoustic physical layer. We analyze their security and demonstrate that we can defend against signal cancellation attacks by designing signals with low autocorrelation. Our system can detect overshadowing attacks using a ternary decision function with a threshold. In our evaluation of this SDP scheme's security and robustness, we achieve a bit error ratio below 0.1% for a net bit rate of 100 bps with a signal-to-noise ratio (SNR) of 14 dB. Using our open-source proof-of-concept implementation on Android smartphones, we demonstrate pairing between different smartphone models.Comment: 11 pages, 11 figures. Published at ACM WiSec 2020 (13th ACM Conference on Security and Privacy in Wireless and Mobile Networks). Updated reference

    Directional characteristics of lunar thermal emission

    Get PDF
    Directional characteristics and brightness temperatures of thermal lunar emissio

    The impact of long-term elevated CO2 on C and N retention in stable SOM pools

    Get PDF
    Elevated atmospheric CO2 frequently increases plant production and concomitant soil C inputs, which may cause additional soil C sequestration. However, whether the increase in plant production and additional soil C sequestration under elevated CO2 can be sustained in the long-term is unclear. One approach to study C-N interactions under elevated CO2 is provided by a theoretical framework that centers on the concept of progressive nitrogen limitation (PNL). The PNL concept hinges on the idea that N becomes less available with time under elevated CO2. One possible mechanism underlying this reduction in N availability is that N is retained in long-lived soil organic matter (SOM), thereby limiting plant production and the potential for soil C sequestration. The long-term nature of the PNL concept necessitates the testing of mechanisms in field experiments exposed to elevated CO2 over long periods of time. The impact of elevated CO2 and N-15 fertilization on L. perenne and T. repens monocultures has been studied in the Swiss FACE experiment for ten consecutive years. We applied a biological fractionation technique using long-term incubations with repetitive leaching to determine how elevated CO2 affects the accumulation of N and C into more stable SOM pools. Elevated CO2 significantly stimulated retention of fertilizer-N in the stable pools of the soils covered with L. perenne receiving low and high N fertilization rates by 18 and 22%, respectively, and by 45% in the soils covered by T. repens receiving the low N fertilization rate. However, elevated CO2 did not significantly increase stable soil C formation. The increase in N retention under elevated CO2 provides direct evidence that elevated CO2 increases stable N formation as proposed by the PNL concept. In the Swiss FACE experiment, however, plant production increased under elevated CO2, indicating that the additional N supply through fertilization prohibited PNL for plant production at this site. Therefore, it remains unresolved why elevated CO2 did not increase labile and stable C accumulation in these systems

    Modeling and investigative studies of Jovian low frequency emissions

    Get PDF
    Jovian decametric (DAM) and hectometric (HOM) emissions were first observed over the entire spectrum by the Voyager 1 and 2 flybys of the planet. They display unusual arc-like structures on frequency-versus-time spectrograms. Software for the modeling of the Jovian plasma and magnetic field environment was performed. In addition, an extensive library of programs was developed for the retrieval of Voyager Planetary Radio Astronomy (PRA) data in both the high and low frequency bands from new noise-free, recalibrated data tapes. This software allows the option of retrieving data sorted with respect to particular sub-Io longitudes. This has proven to be invaluable in the analyses of the data. Graphics routines were also developed to display the data on color spectrograms

    Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study

    Get PDF
    Background Marine Synechococcus owe their specific vivid color (ranging from blue-green to orange) to their large extrinsic antenna complexes called phycobilisomes, comprising a central allophycocyanin core and rods of variable phycobiliprotein composition. Three major pigment types can be defined depending on the major phycobiliprotein found in the rods (phycocyanin, phycoerythrin I or phycoerythrin II). Among strains containing both phycoerythrins I and II, four subtypes can be distinguished based on the ratio of the two chromophores bound to these phycobiliproteins. Genomes of eleven marine Synechococcus strains recently became available with one to four strains per pigment type or subtype, allowing an unprecedented comparative genomics study of genes involved in phycobilisome metabolism. Results By carefully comparing the Synechococcus genomes, we have retrieved candidate genes potentially required for the synthesis of phycobiliproteins in each pigment type. This includes linker polypeptides, phycobilin lyases and a number of novel genes of uncharacterized function. Interestingly, strains belonging to a given pigment type have similar phycobilisome gene complements and organization, independent of the core genome phylogeny (as assessed using concatenated ribosomal proteins). While phylogenetic trees based on concatenated allophycocyanin protein sequences are congruent with the latter, those based on phycocyanin and phycoerythrin notably differ and match the Synechococcus pigment types. Conclusion We conclude that the phycobilisome core has likely evolved together with the core genome, while rods must have evolved independently, possibly by lateral transfer of phycobilisome rod genes or gene clusters between Synechococcus strains, either via viruses or by natural transformation, allowing rapid adaptation to a variety of light niches

    Reaching the Masses:A New Subdiscipline of App Programmer Education

    Get PDF
    Programmers’ lack of knowledge and interest in secure development threatens everyone who uses mobile apps. The rise of apps has engaged millions of independent app developers, who rarely encounter any but low level security techniques. But what if software security were presented as a game, or a story, or a discussion? What if learning app security techniques could be fun as well as empowering? Only by introducing the powerful motivating techniques developed for other disciplines can we hope to upskill independent app developers, and achieve the security that we’ll need in 2025 to safeguard our identities and our data

    The interdisciplinary nature of SOIL

    Get PDF
    The holistic study of soils requires an interdisciplinary approach involving biologists, chemists, geologists, and physicists, amongst others, something that has been true from the earliest days of the field. In more recent years this list has grown to include anthropologists, economists, engineers, medical professionals, military professionals, sociologists, and even artists. This approach has been strengthened and reinforced as current research continues to use experts trained in both soil science and related fields and by the wide array of issues impacting the world that require an in-depth understanding of soils. Of fundamental importance amongst these issues are biodiversity, biofuels/energy security, climate change, ecosystem services, food security, human health, land degradation, and water security, each representing a critical challenge for research. In order to establish a benchmark for the type of research that we seek to publish in each issue of SOIL, we have outlined the interdisciplinary nature of soil science research we are looking for. This includes a focus on the myriad ways soil science can be used to expand investigation into a more holistic and therefore richer approach to soil research. In addition, a selection of invited review papers are published in this first issue of SOIL that address the study of soils and the ways in which soil investigations are essential to other related fields. We hope that both this editorial and the papers in the first issue will serve as examples of the kinds of topics we would like to see published in SOIL and will stimulate excitement among our readers and authors to participate in this new venture

    The Finite Size SU(3) Perk-Schultz Model with Deformation Parameter q=exp(i 2 pi/3)

    Full text link
    From extensive numeric diagonalizations of the SU(3) Perk-Schultz Hamiltonian with a special value of the anisotropy and different boundary conditions, we have observed simple regularities for a significant part of its eigenspectrum. In particular the ground state energy and nearby excitations belong to this part of the spectrum. Our simple formulae describing these regularities remind, apart from some selection rules, the eigenspectrum of the free fermion model. Based on the numerical observations we formulate several conjectures. Using explicit solutions of the associated nested Bethe-ansatz equations, guessed from an analysis of the functional equations of the model, we provide evidence for a part of them.Comment: 19 pages, no figure

    Bark beetle population dynamics in the Anthropocene: Challenges and solutions

    Get PDF
    Tree-killing bark beetles are the most economically important insects in conifer forests worldwide. However, despite N200 years of research, the drivers of population eruptions and crashes are still not fully understood and the existing knowledge is thus insufficient to face the challenges posed by the Anthropocene. We critically analyze potential biotic and abiotic drivers of population dynamics of an exemplary species, the European spruce bark beetle (ESBB) (Ips typographus) and present a multivariate approach that integrates the many drivers governing this bark beetle system. We call for hypothesis-driven, large-scale collaborative research efforts to improve our understanding of the population dynamics of this and other bark beetle pests. Our approach can serve as a blueprint for tackling other eruptive forest insects
    • …
    corecore