163 research outputs found

    Lithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland

    Full text link
    Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel‐Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.Key PointsA landscape evolution model is used to show how topographic history is influenced by regional geologyExhumation of different lithologies modulates the transient response to base level changes over millions of yearsSignificantly different erosion and topographic histories result depending on the stratigraphic architecture, even over a small range in erodibilityPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141336/1/jgrf20766_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141336/2/jgrf20766.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141336/3/jgrf20766-sup-0001-Data_S1.pd

    High magnitude and rapid incision from river capture: Rhine River, Switzerland

    Full text link
    Landscape evolution is controlled by the development and organization of drainage basins. As a landscape evolves, drainage reorganization events can occur via river capture or piracy, whereby one river basin grows at the expense of another. The river downstream of a capture location will generate a transient topographic response as the added water discharge increases sediment transport and erosion efficiency. This erosional response will propagate upstream through both the captured and original river basins. Here we focus on quantifying the impact of drainage reorganization along the Rhine/Aare River system (~45,000 km 2 ) during the late Pliocene/early Pleistocene, where gravel remnants indicate total incision of ~650 m during the last ~4.2 Myr in the region of the recent Aare‐Rhine confluence. We develop a numerical model of drainage capture to quantify the range of possible magnitudes of erosion and the transient river response resulting from the reorganization of the Rhine River. The model accounts for both fluvial incision and sediment transport. Our model estimates 400–800 m of river elevation change (lowering profiles) during the last ~4 Myr due to river capture events, providing an important component to the recent exhumation budget of the Swiss Alpine Foreland. The model indicates a rapid response to capture events (re‐equilibration timescale of ~1 Myr). The predicted incision magnitudes are consistent with incision measured from the elevation of Pliocene and early Pleistocene river gravels, suggesting that across northern Switzerland, a significant amount of incision can be explained by drainage reorganization. Key Points Drainage capture has caused significant erosion along the Rhine River The transient erosional wave propagates quickly through the landscape The incision is a significant fraction of Plio‐Pleistocene erosion in the regionPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99064/1/jgrf20056.pd

    Absolutely continuous invariant measures for random non-uniformly expanding maps

    Full text link
    We prove existence of (at most denumerable many) absolutely continuous invariant probability measures for random one-dimensional dynamical systems with asymptotic expansion. If the rate of expansion (Lyapunov exponents) is bounded away from zero, we obtain finitely many ergodic absolutely continuous invariant probability measures, describing the asymptotics of almost every point. We also prove a similar result for higher-dimensional random non-uniformly expanding dynamical systems. The results are consequences of the construction of such measures for skew-products with essentially arbitrary base dynamics and asymptotic expansion along the fibers. In both cases our method deals with either critical or singular points for the random maps.Comment: 30 pages; 2 figures. Keywords: non-uniform expansion, random dynamics, slow recurrence, singular and critical set, absolutely continuous invariant measures, skew-product. To appear in Math Z, 201

    Green Tea Polyphenols Stimulate Mitochondrial Biogenesis and Improve Renal Function after Chronic Cyclosporin A Treatment in Rats

    Get PDF
    Our previous studies showed that an extract from Camellia sinenesis (green tea), which contains several polyphenols, attenuates nephrotoxicity caused by cyclosporine A (CsA). Since polyphenols are stimulators of mitochondrial biogenesis (MB), this study investigated whether stimulation of MB plays a role in green tea polyphenol protection against CsA renal toxicity. Rats were fed a powdered diet containing green tea polyphenolic extract (0.1%) starting 3 days prior to CsA treatment (25 mg/kg, i.g. daily for 3 weeks). CsA alone decreased renal nuclear DNA-encoded oxidative phosphorylation (OXPHOS) protein ATP synthase-β (AS-β) by 42%, mitochondrial DNA (mtDNA)-encoded OXPHOS protein NADH dehydrogenase-3 (ND3) by 87% and their associated mRNAs. Mitochondrial DNA copy number was also decreased by 78% by CsA. Immunohistochemical analysis showed decreased cytochrome c oxidase subunit IV (COX-IV), an OXPHOS protein, in tubular cells. Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, the master regulator of MB, and mitochondrial transcription factor-A (Tfam), the transcription factor that regulates mtDNA replication and transcription, were 42% and 90% lower, respectively, in the kidneys of CsA-treated than in untreated rats. These results indicate suppression of MB by chronic CsA treatment. Green tea polyphenols alone and following CsA increased AS-β, ND3, COX-IV, mtDNA copy number, PGC-1α mRNA and protein, decreased acetylated PGC-1α, and increased Tfam mRNA and protein. In association with suppressed MB, CsA increased serum creatinine, caused loss of brush border and dilatation of proximal tubules, tubular atrophy, vacuolization, apoptosis, calcification, and increased neutrophil gelatinase-associated lipocalin expression, leukocyte infiltration, and renal fibrosis. Green tea polyphenols markedly attenuated CsA-induced renal injury and improved renal function. Together, these results demonstrate that green tea polyphenols attenuate CsA-induced kidney injury, at least in part, through the stimulation of MB

    Chitin Binding Proteins Act Synergistically with Chitinases in Serratia proteamaculans 568

    Get PDF
    Genome sequence of Serratia proteamaculans 568 revealed the presence of three family 33 chitin binding proteins (CBPs). The three Sp CBPs (Sp CBP21, Sp CBP28 and Sp CBP50) were heterologously expressed and purified. Sp CBP21 and Sp CBP50 showed binding preference to β-chitin, while Sp CBP28 did not bind to chitin and cellulose substrates. Both Sp CBP21 and Sp CBP50 were synergistic with four chitinases from S. proteamaculans 568 (Sp ChiA, Sp ChiB, Sp ChiC and Sp ChiD) in degradation of α- and β-chitin, especially in the presence of external electron donor (reduced glutathione). Sp ChiD benefited most from Sp CBP21 or Sp CBP50 on α-chitin, while Sp ChiB and Sp ChiD had major advantage with these Sp CBPs on β-chitin. Dose responsive studies indicated that both the Sp CBPs exhibit synergism ≥0.2 µM. The addition of both Sp CBP21 and Sp CBP50 in different ratios to a synergistic mixture did not significantly increase the activity. Highly conserved polar residues, important in binding and activity of CBP21 from S. marcescens (Sm CBP21), were present in Sp CBP21 and Sp CBP50, while Sp CBP28 had only one such polar residue. The inability of Sp CBP28 to bind to the test substrates could be attributed to the absence of important polar residues

    KAP Degradation by Calpain Is Associated with CK2 Phosphorylation and Provides a Novel Mechanism for Cyclosporine A-Induced Proximal Tubule Injury

    Get PDF
    The use of cyclosporine A (CsA) is limited by its severe nephrotoxicity that includes reversible vasoconstrictor effects and proximal tubule cell injury, the latter associated whith chronic kidney disease progression. The mechanisms of CsA-induced tubular injury, mainly on the S3 segment, have not been completely elucidated. Kidney androgen-regulated protein (KAP) is exclusively expressed in kidney proximal tubule cells, interacts with the CsA-binding protein cyclophilin B and its expression diminishes in kidneys of CsA-treated mice. Since we reported that KAP protects against CsA toxicity in cultured proximal tubule cells, we hypothesized that low KAP levels found in kidneys of CsA-treated mice might correlate with proximal tubule cell injury. To test this hypothesis, we used KAP Tg mice developed in our laboratory and showed that these mice are more resistant to CsA-induced tubular injury than control littermates. Furthermore, we found that calpain, which was activated by CsA in cell cultures and kidney, is involved in KAP degradation and observed that phosphorylation of serine and threonine residues found in KAP PEST sequences by protein kinase CK2 enhances KAP degradation by calpain. Moreover, we also observed that CK2 inhibition protected against CsA-induced cytotoxicity. These findings point to a novel mechanism for CsA-induced kidney toxicity that might be useful in developing therapeutic strategies aimed at preventing tubular cell damage while maintaining the immunosuppressive effects of CsA

    A Staphylococcus xylosus isolate with a new mecC allotype

    Get PDF
    Recently, a novel variant of mecA known as mecC (mecA(LGA251)) was identified in Staphylococcus aureus isolates from both humans and animals. In this study, we identified a Staphylococcus xylosus isolate that harbors a new allotype of the mecC gene, mecC1. Whole-genome sequencing revealed that mecC1 forms part of a class E mec complex (mecI-mecR1-mecC1-blaZ) located at the orfX locus as part of a likely staphylococcal cassette chromosome mec element (SCCmec) remnant, which also contains a number of other genes present on the type XI SCCmec

    High-resolution seismic imaging of a Younger Dryas and Holocene mass movement complex in glacial lake Windermere, UK

    No full text
    The stratigraphy and sedimentological processes operating over the last 15,000 years within glacial lake Windermere (UK), at the mouth of Cunsey Beck, were imaged by a decimetre-resolution seismic reflection survey. A complex of fifteen mass movement deposits was identified as contemporaneous with the Younger Dryas, and two within the overlying Holocene drape. The high vertical resolution and dense grid of profiles allowed pseudo three-dimensional mapping of individual events, along with the determination of their relative temporal relationships. The size of the mass wasting deposits has been estimated to range between 2100 and > 100,000 m3. The geometry, structure and relationship to the existing stratigraphy suggest a rapid emplacement of the Younger Dryas mass movement deposits, facilitated by climatic changes making subaqueous slopes unstable, with possible triggering by seismic activity. Morphometric parameters, such as volume and planar surface area, indicate a greater mobility of the Younger Dryas mass movement deposits compared to the Holocene events. The sediments of all imaged mass movement deposits are believed to originate from the slope deposits of the lake. The age of two Holocene mass movement deposits, triggered by flooding or terrestrial debris flows, is estimated to be 2400 and 4400 years BP
    corecore