14 research outputs found

    Word Processing differences between dyslexic and control children

    Get PDF
    BACKGROUND: The aim of this study was to investigate brain responses triggered by different wordclasses in dyslexic and control children. The majority of dyslexic children have difficulties to phonologically assemble a word from sublexical parts following grapheme-to-phoneme correspondences. Therefore, we hypothesised that dyslexic children should mainly differ from controls processing low frequent words that are unfamiliar to the reader. METHODS: We presented different wordclasses (high and low frequent words, pseudowords) in a rapid serial visual word (RSVP) design and performed wavelet analysis on the evoked activity. RESULTS: Dyslexic children had lower evoked power amplitudes and a higher spectral frequency for low frequent words compared to control children. No group differences were found for high frequent words and pseudowords. Control children had higher evoked power amplitudes and a lower spectral frequency for low frequent words compared to high frequent words and pseudowords. This pattern was not present in the dyslexic group. CONCLUSION: Dyslexic children differed from control children only in their brain responses to low frequent words while showing no modulated brain activity in response to the three word types. This might support the hypothesis that dyslexic children are selectively impaired reading words that require sublexical processing. However, the lacking differences between word types raise the question if dyslexic children were able to process the words presented in rapid serial fashion in an adequate way. Therefore the present results should only be interpreted as evidence for a specific sublexical processing deficit with caution

    Implicit sequence learning in dyslexia : a within-sequence comparison of first- and higher-order information

    No full text
    The present study examines implicit sequence learning in adult dyslexics with a focus on comparing sequence transitions with different statistical complexities. Learning of a 12-item deterministic sequence was assessed in 12 dyslexic and 12 non-dyslexic university students. Both groups showed equivalent standard reaction time decrements when the sequence was unexpectedly changed suggesting learning of the sequence took place. However, a novel analysis comparing transitions of differing complexity within the learning blocks indicated that dyslexic participants were impaired only for higher-order but not first-order sequence learning. No difference was found in the explicit awareness contribution between two groups and this was found not to correlate with reaction time performance. This result suggests that statistical complexity of the sequence may account for intact and impaired learning performance in dyslexia

    A Bayesian Latent Group Analysis for Detecting Poor Effort in the Assessment of Malingering

    No full text
    Ortega A, Wagenmakers E-J, Lee MD, Markowitsch HJ, Piefke M. A Bayesian Latent Group Analysis for Detecting Poor Effort in the Assessment of Malingering. Archives of Clinical Neuropsychology. 2012;27(4):453-465.Despite their theoretical appeal, Bayesian methods for the assessment of poor effort and malingering are still rarely used in neuropsychological research and clinical diagnosis. In this article, we outline a novel and easy-to-use Bayesian latent group analysis of malingering whose goal is to identify participants displaying poor effort when tested. Our Bayesian approach also quantifies the confidence with which each participant is classified and estimates the base rates of malingering from the observed data. We implement our Bayesian approach and compare its utility in effort assessment to that of the classic below-chance criterion of symptom validity testing (SVT). In two experiments, we evaluate the accuracy of both a Bayesian latent group analysis and the below-chance criterion of SVT in recovering the membership of participants assigned to the malingering group. Experiment 1 uses a simulation research design, whereas Experiment 2 involves the differentiation of patients with a history of stroke from coached malingerers. In both experiments, sensitivity levels are high for the Bayesian method, but low for the below-chance criterion of SVT. Additionally, the Bayesian approach proves to be resistant to possible effects of coaching. We conclude that Bayesian latent group methods complement existing methods in making more informed choices about malingering
    corecore