1,777 research outputs found

    The influence of alcohol content variation in UK packaged beers on the uncertainty of calculations using the Widmark equation

    Get PDF
    It is common for forensic practitioners to calculate an individual's likely blood alcohol concentration following the consumption of alcoholic beverage(s) for legal purposes, such as in driving under the influence (DUI) cases. It is important in these cases to be able to give the uncertainty of measurement on any calculated result, for this reason uncertainty data for the variables used for any calculation are required. In order to determine the uncertainty associated with the alcohol concentration of beer in the UK the alcohol concentration (%v/v) of 218 packaged beers (112 with an alcohol concentration of ≤5.5%v/v and 106 with an alcohol concentration of >5.5%v/v) were tested using an industry standard near infra-red (NIR) analyser. The range of labelled beer alcohol by volume (ABV's) tested was 3.4%v/v – 14%v/v. The beers were obtained from a range of outlets throughout the UK over a period of 12 months. The root mean square error (RMSE) was found to be ±0.43%v/v (beers with declared %ABV of ≤5.5%v/v) and ±0.53%v/v (beers with declared %ABV of >5.5%v/v) the RMSE for all beers was ±0.48%v/v. The standard deviation from the declared %ABV is larger than those previously utilised for uncertainty calculations and illustrates the importance of appropriate experimental data for use in the determination of uncertainty in forensic calculations

    Toll-like receptor expression in C3H/HeN and C3H/HeJ mice during Salmonella enterica serovar Typhimurium infection

    Get PDF
    Here, we have investigated the mRNA expression of Toll-like receptor 2 (TLR-2), TLR-4, and MD-2 in spleens and livers of C3H/HeN mice (carrying wild-type TLR-4) and C3H/HeJ mice (carrying mutated TLR-4) in response to Salmonella infection. During Salmonella infections, TLR-4 is activated, leading to increased TLR-2 and decreased TLR-4 expression

    MapReduce Particle Filtering with Exact Resampling and Deterministic Runtime

    Get PDF
    Particle filtering is a numerical Bayesian technique that has great potential for solving sequential estimation problems involving non-linear and non-Gaussian models. Since the estimation accuracy achieved by particle filters improves as the number of particles increases, it is natural to consider as many particles as possible. MapReduce is a generic programming model that makes it possible to scale a wide variety of algorithms to Big data. However, despite the application of particle filters across many domains, little attention has been devoted to implementing particle filters using MapReduce. In this paper, we describe an implementation of a particle filter using MapReduce. We focus on a component that what would otherwise be a bottleneck to parallel execution, the resampling component. We devise a new implementation of this component, which requires no approximations, has O(N)O\left(N\right) spatial complexity and deterministic O((logN)2)O\left(\left(\log N\right)^2\right) time complexity. Results demonstrate the utility of this new component and culminate in consideration of a particle filter with 2242^{24} particles being distributed across 512512 processor cores

    MapReduce particle filtering with exact resampling and deterministic runtime

    Get PDF
    Particle filtering is a numerical Bayesian technique that has great potential for solving sequential estimation problems involving non-linear and non-Gaussian models. Since the estimation accuracy achieved by particle filters improves as the number of particles increases, it is natural to consider as many particles as possible. MapReduce is a generic programming model that makes it possible to scale a wide variety of algorithms to Big data. However, despite the application of particle filters across many domains, little attention has been devoted to implementing particle filters using MapReduce. In this paper, we describe an implementation of a particle filter using MapReduce. We focus on a component that what would otherwise be a bottleneck to parallel execution, the resampling component. We devise a new implementation of this component, which requires no approximations, has O(N) spatial complexity and deterministic O((logN)2) time complexity. Results demonstrate the utility of this new component and culminate in consideration of a particle filter with 224 particles being distributed across 512 processor cores

    I Want The Twilight And You

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/4787/thumbnail.jp

    Postmortem tissue distribution of morphine and its metabolites in a series of heroin related deaths

    Get PDF
    The abuse of heroin (diamorphine) and heroin deaths are growing around the world. The interpretation of the toxicological results from suspected heroin deaths is notoriously difficult especially in cases where there may be limited samples. In order to help forensic practitioners with heroin interpretation we determined the concentration of morphine (M), morphine‐3‐glucuronide (M3G) and morphine‐6‐glucuronide (M6G) in blood (femoral and cardiac), brain (thalamus), liver (deep right lobe), bone marrow (sternum), skeletal muscle (psoas) and vitreous humor in 44 heroin related deaths. The presence of 6‐monoacetylmorphine (6‐MAM) in any of the postmortem samples was used as confirmation of heroin use. Quantitation was carried out using a validated LC‐MS/MS method with solid phase extraction. We also determined the presence of papaverine, noscapine and codeine in the samples, substances often found in illicit heroin and that may help determine illicit heroin use. The results of this study show that vitreous is the best sample to detect 6‐MAM (100% of cases), and thus heroin use. The results of the M, M3G and M6G quantitation in this study allow a degree of interpretation when samples are limited. However in some cases it may not be possible to determine heroin/morphine use as in 4 cases in muscle (3 cases in bone marrow) no morphine, morphine‐3‐glucuronide or morphine‐6‐glucuronide was detected, even though they were detected in other case samples. As always postmortem cases of suspected morphine/heroin intoxication should be interpreted with care and with as much case knowledge as possible

    Campylobacter jejuni PflB is required for motility and colonisation of the chicken gastrointestinal tract.

    Get PDF
    Campylobacter jejuni is the leading cause of foodborne bacterial gastroenteritis worldwide. Although the mechanisms by which C. jejuni causes disease are not completely understood, the presence of functional flagella appears to be required for colonisation of the gastrointestinal tract of humans and animals. Therefore much attention has been given to understanding the synthesis and role of flagella in C. jejuni. In this study we report insights into the function of PflB that is essential for Campylobacter motility. We have explored the function of this gene by constructing deletion mutants in C. jejuni strains NCTC11168 and M1, in the genes cj0390 and CJM1_0368, respectively. The mutants were non-motile yet assembled flagella that appeared structurally identical to the wild type. Furthermore the protein is required for C. jejuni colonisation of caeca in a two-week old chicken colonisation model.This work was supported by the Department for Environment, Food and Rural Affairs (Defra) Senior Fellowship awarded to D.J.M.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.micpath.2015.09.01

    Sublethal infection of C57BL/6 mice with Salmonella enterica serovar typhimurium leads to an increase in levels of toll-like receptor 1 (TLR1), TLR2, and TLR9 mRNA as well as a decrease in levels of TLR6 mRNA in infected organs

    Get PDF
    Sublethal infection of C57BL/6 mice with Salmonella enterica serovar Typhimurium M525P initiates a strong inflammatory response. We measured organ expression of mRNA for Toll-like receptors and their associated signaling molecules during S. enterica serovar Typhimurium infection. During infection, the Toll-lie receptor 1 (TLR1), TLR2, and TLR9 mRNA levels increased, while TLR6 mRNA expression decreased

    PinR mediates the generation of reversible population diversity in Streptococcus zooepidemicus

    Get PDF
    Opportunistic pathogens must adapt to and survive in a wide range of complex ecosystems. Streptococcus zooepidemicus is an opportunistic pathogen of horses and many other animals, including humans. The assembly of different surface architecture phenotypes from one genotype is likely to be crucial to the successful exploitation of such an opportunistic lifestyle. Construction of a series of mutants revealed that a serine recombinase, PinR, inverts 114 bp of the promoter of SZO_08560, which is bordered by GTAGACTTTA and TAAAGTCTAC inverted repeats. Inversion acts as a switch, controlling the transcription of this sortase-processed protein, which may enhance the attachment of S. zooepidemicus to equine trachea. The genome of a recently sequenced strain of S. zooepidemicus, 2329 (Sz2329), was found to contain a disruptive internal inversion of 7 kb of the FimIV pilus locus, which is bordered by TAGAAA and TTTCTA inverted repeats. This strain lacks pinR and this inversion may have become irreversible following the loss of this recombinase. Active inversion of FimIV was detected in three strains of S. zooepidemicus, 1770 (Sz1770), B260863 (SzB260863) and H050840501 (SzH050840501), all of which encoded pinR. A deletion mutant of Sz1770 that lacked pinR was no longer capable of inverting its internal region of FimIV. The data highlight redundancy in the PinR sequence recognition motif around a short TAGA consensus and suggest that PinR can reversibly influence the wider surface architecture of S. zooepidemicus, providing this organism with a bet-hedging solution to survival in fluctuating environments

    Use of the Randox Evidence Investigator immunoassay system for near-body drug screening during post-mortem examination in 261 forensic cases

    Get PDF
    BackgroundThis paper describes the performance of four Randox drug arrays, designed for whole blood, for the near-body analysis of drugs in a range of post-mortem body specimens.MethodsLiver, psoas muscle, femoral blood, vitreous humor and urine from 261 post-mortem cases were screened in the mortuary and results were obtained within the time taken to complete a post-mortem. Specimens were screened for the presence of amfetamine, barbiturates, benzodiazepines, benzoylecgonine, buprenorphine, cannabinoids, dextropropoxyphene, fentanyl, ketamine, lysergide, methadone, metamfetamine, methaqualone, 3,4-methylenedioxymetamfetamine, opioids, paracetamol, phencyclidine, salicylate, salicylic acid, zaleplon, zopiclone and zolpidem using the DOA I, DOA I+, DOA II and Custom arrays.ResultsLiver and muscle specimens were obtained from each of the 261 post-mortem cases; femoral blood, vitreous humor and urine were available in 98%, 92% and 72% of the cases, respectively. As such, the equivalent of 12,978 individual drug-specific, or drug-group, immunoassay tests were undertaken. Overall >98% of the 12,978 screening tests undertaken agreed with laboratory confirmatory tests performed on femoral blood.ConclusionsThere is growing interest in the development of non-invasive procedures for determining the cause of death using MRI and CT scanning however these procedures are, in most cases, unable to determine whether death may have been associated with drug use. The Randox arrays can provide qualitative and semi-quantitative results in a mortuary environment enabling pathologists to decide whether to remove specimens from the body and submit them for laboratory analysis. Analysis can be undertaken on a range of autopsy specimens which is particularly useful when conventional specimens such as blood are unavailable
    corecore