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Abstract Particle filtering is a numerical Bayesian technique that has great
potential for solving sequential estimation problems involving non-linear and
non-Gaussian models. Since the estimation accuracy achieved by particle filters
improves as the number of particles increases, it is natural to consider as many
particles as possible. MapReduce is a generic programming model that makes
it possible to scale a wide variety of algorithms to Big data. However, despite
the application of particle filters across many domains, little attention has
been devoted to implementing particle filters using MapReduce.

In this paper, we describe an implementation of a particle filter using
MapReduce. We focus on a component that what would otherwise be a bot-
tleneck to parallel execution, the resampling component. We devise a new im-
plementation of this component, which requires no approximations, has O (N)

spatial complexity and deterministic O
(

(logN)
2
)

time complexity. Results

demonstrate the utility of this new component and culminate in consideration
of a particle filter with 224 particles being distributed across 512 processor
cores.

Keywords MCMC Methods, Particle Filters, Big data Sampling, MapRe-
duce, Resampling.

1 Introduction

Particle filters are a Bayesian Monte-Carlo method that provide a general
framework for estimation in response to an incoming stream of data. The key
idea is to represent the probability density function (pdf) of the state of a sys-
tem using random samples (known as particles). These samples are propagated
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across iterations in time in a way that capitalises on an application-specific
non-linear, non-Gaussian state-space model. This state-space model describes
both the dynamic evolution of the state and the relationship between the state
and the measurements. The use of random samples to articulate uncertainty
means that particle filters can be applied to a variety of real-world problems
without any need to approximate the models used. This is in contrast to
alternative techniques (e.g., the Extended Kalman filter, EKF) that approxi-
mate the models such that the uncertainty present can be approximated using
a parametric probability density (a multivariate Gaussian in the case of an
EKF). The result is that a particle filter typically outperforms such alternative
techniques in scenarios involving pronounced departures from linear-Gaussian
models. Such scenarios are widespread. This is arguably the reason why par-
ticle filters, since their inception [17], have been applied successfully in such a
diverse range of contexts [14,18,38,42].

Particle filters have the appealing property that, as the number of samples
increases, the ability of the samples to represent the pdf increases and the
accuracy of estimates derived from the particles improves: an upper-bound on
the variance of an estimate scales as O

(
1
N

)
[33]. It is therefore natural to seek

to use as many particles as possible. However, when the number of samples
becomes very large, the samples will not physically fit within the memory space
of a single compute node. Big data platforms have been developed to address
the generic problem of which this is a special case. These platforms work by
identifying abstractions of algorithms that make the potential for parallelism
apparent. The platforms (and not the programmer) are then able to exploit the
available computational resources to distribute the processing. One popular
abstraction is MapReduce (which is described in more detail in section 2.2).
Various techniques have been developed to distribute particle filters across
multiple processor-cores (see section 7 for the details), but MapReduce has not
been used with particle filters extensively (that said, [9] and [10] are counter-
examples we are aware of).

The resampling component is a critical component of a particle filter and
non-trivial to parallelise. As will be discussed in more detail in section 7,
previous approaches to distributing the resampling step have focused on mod-
ifying the resampling process with the aim of making it more amenable to
distributed implementation. One notable exception exists [34]1 and ensures
that the output from the distributed implementation is exactly that output
from a single-processor implementation while also ensuring deterministic2 data
transfer and runtime. Such deterministic runtime is important in real-time ap-
plications (which are widespread) where the output of the particle filter is used
to feed the input of another process, which needs to receive that input within
a specified latency.

1 Though we are not aware of any empirical analysis of this approach being published.
2 More specifically, the algorithm’s runtime is independent of the distribution of the

weights in the particle filter.
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In this paper, we present an improved parallel implementation strategy for
the resampling component, a MapReduce representation of the particle filter
(including this resampling component) and instantiate the particle filter in the
context of two Big data platforms. In doing so, this paper makes the following
key contributions:

– We propose an improved implementation of an exact deterministic resam-
pling algorithm that has better temporal complexity compared to the cur-
rent state-of-the-art [34]. More specifically, the proposed version of the
parallel algorithm has the complexity of O((log2N)2) compared to the
original complexity of O((log2N)3).

– We provide two different MapReduce variants of our new algorithm that
fit both with the in-memory processing and out-of-core processing models.
These are the processing models used by Hadoop and Spark respectively.

– We perform detailed performance and scalability analysis of our new al-
gorithm in comparison to both the pre-existing state-of-the-art [34] and
an implementation optimised for a single processor-core. We deliberately
chose an application that stresses the resampling component of the particle
filter such that our analysis relates to worst-case performance.

The remainder of this paper is organised as follows: In section 2, we pro-
vide a brief overview of Big data processing, and the MapReduce programming
model. This is then followed by a detailed description of particle filtering in
section 3. In section 4, we describe the fundamental building blocks that are
used to construct the implementations of the particle filtering algorithm, in-
cluding, in section 4.8.2, the new component of the resampling algorithm. We
then describe our MapReduce-based particle filtering implementation in sec-
tion 5. We follow this section with an evaluation of our algorithms on key two
MapReduce frameworks in Section 6. Section 7 highlights related work before
section 8 concludes.

2 Big data Processing

The focus in this paper is on the problem of using large numbers of samples
within a particle filter. Big data processing frameworks (e.g., Apache projects
such as: Hadoop [1], Spark [4] and Storm [5]3) are designed for handling large
amounts of data and can therefore be applied in this context4. We therefore
focus in this paper on using such frameworks in conjunction with parallel
computational resources, such as clusters, to handle large volumes of data5. In

3 Including the associated ever-growing ecosystem of tools (e.g., Mahout [2] and GraphX
for Spark [40]).

4 Conventional High Performance Computing (HPC) approaches use parallel computa-
tions to optimise processing time. We refer the reader to [8] for a good coverage of HPC-
bound approaches for parallelising applications.

5 We anticipate that the ‘heat wall’ (i.e., the inability to remove enough heat from transis-
tors that switch ever faster) will mean that for chip manufacturers to meet the expectation
set by Moore’s law, they will soon (if not already) be doubling the number of cores (not
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this section, we discuss the use of such Big data frameworks in general and, in
particular, one of the programming models that underpins such frameworks,
the MapReduce programming model.

2.1 Big data Frameworks

An attractive approach for scaling the problem with data is to use Big data
frameworks. More strictly, Big data frameworks go beyond the issue of data
volume and address much wider issues covering augmented V’s of data, for
instance volume, velocity, variety, value and veracity [39]. Big data framework-
based solutions are process-centric: the programmer describes the algorithm
in a way that enables the framework itself to understand (and attempt to
exploit) the potential to distribute the data and processing6. The result of
this delegation of the optimisation for speed to the framework is that, while
many of today’s Big data frameworks can handle large volumes of data, none
can match the runtime performance of conventional HPC systems [37].

There are a growing number of different programming models that are
used to describe algorithms within Big data frameworks. These models include
MapReduce [15], Stream Processing [4, 5, 22] and Query-based techniques [3,
43]. Here, we focus on one such programming model, MapReduce.

2.2 The MapReduce Programming Model

MapReduce is a popular programming model used in many Big data pro-
cessing frameworks (and even some HPC frameworks). The key focus of the
MapReduce model is on enabling the framework to distribute the processing
of a large dataset by expressing algorithms in terms of map and reduce op-
erations, via defining mappers and reducers. Mappers, when applied to each
datum, output a list of (key, value) pairs. The framework then collates all the
values associated with each key. Reducers are then applied to the list of values
for each key to output a single value. Note that both the map and reduce
operations are inherently parallel across all data and keys respectively7. To

transistors per square inch) used in each processor each year. In ten years’ time, if this trend
continues, we would have desktop computers with a thousand times as many cores as to-
day. This trend motivates the authors to design implementation strategies for particle filters
that are well suited to the multi-core processors which will, we believe, become increasingly
prevalent over time.

6 This contrasts HPC-based solutions, where the programmer aims to exploit intricate
knowledge of the underlying architecture to ensure that data movement and processing are
jointly optimised for the specific hardware.

7 The exact number of mapper and reducer processes on a parallel resource (for instance,
a multi-node cluster) varies depending on the configuration, but the important point is that
the algorithm developer does not need to worry about how the processes are distributed
when defining the algorithm. Of course, that does not mean that there is not utility in
the developer describing algorithms using mappers and reducers that are well suited to the
problem being tackled and to the configuration being used.
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Fig. 1 General MapReduce Processing Model.

exemplify this, consider a dataset where each datum is a sentence in a Big
document (e.g., Wikipedia). The problem of counting the total number of oc-
currences of each word in the document corpus can then be described as using
the words as the key, a mapper that outputs a (non-zero) count of the number
of times each word occurs in each sentence8 and a reducer that calculates the
sum of the counts. For each word, the reducer’s output is then the sum over
all sentences of the counts per sentence. Another example is shown in Figure 1
and illustrates the ability to pass (key, value) pairs into a mapper and thereby
use the output of one mapper as the input into a second mapper.

Two key frameworks that support MapReduce, albeit in slightly different
ways, are Hadoop and Spark. These are now considered in turn.

2.2.1 Hadoop

MapReduce is one of the two fundamental components of Hadoop. The other is
the Hadoop Distributed File System (HDFS). HDFS enables multiple comput-
ers’ disks to be accessed in much the same way as if it were a single (Big) disk.
In Hadoop, the mapper and reducer generate files which are stored in HDFS,
such that Hadoop implements data movement entirely via the file system.

2.2.2 Spark

The Spark framework operates using a different principle. First, at the Appli-
cation Programming Interface (API) level, Spark provides a distributed data
structure known as a Resilient Distributed Dataset (RDDs) [44]. MapReduce
is then just one of a large number of transformations that (via a rich set of
APIs) can be applied to RDDs. It is also important to realise that evalua-
tions in Spark are lazily executed. This means, unlike conventional processing

8 Note that the output from each sentence would only be for the words that occur in that
sentence, not every word that ever occurs in the corpus.
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engines (e.g., Hadoop), executions never actually happen when transforma-
tions are defined. Instead, transformations are used to compose a data-flow
graph and execution happens when forced through actions (i.e., when neces-
sary). This delayed evaluation enables the Spark framework to optimise (and
plan) the execution9. The result is often significant improvements in runtime
performance. Another important property of RDDs is that they can reside
in memory, disk or in combination. Indeed, although Spark can make use of
HDFS, the data movements in Spark are primarily via memory. Again, this can
result in significant improvements in runtime performance relative to Hadoop.

3 Particle Filtering

We now provide a brief description of particle filtering. The reader unfamiliar
with particle filtering is referred to [7]. Here, we aim to introduce notation and
contextualise the discussion in subsequent sections.

Let {x}k=1,2,.. be the discrete-time Markov process representing the col-
lection of states and {z}k=1,2,.. be the sequence of measurements. p(xk|xk−1)
is the state transition probability and p(zk|xk) is the likelihood. Recursive
Bayesian filtering is the solution to the problem of using these models to
process incoming data to obtain the posterior probability density function,
p(xk|z1:k), where z1:k = {zi, i = 1, . . . , k} is the sequence of measurements up
to and including time k. p(xk|z1:k) is the sufficient statistic used to calculate,
for example, estimates of the current state vector.

In a particle filter, the posterior is approximated using a set of N random
samples, where the ith sample is xi

k and has a weight of wi
k.

The weights are normalised such that
∑N

i=1 w
i
k = 1. Estimates associated

with the posterior at time k can then be approximated as:

∫
f(xk)p(xk|z1:k) ≈

N∑

i=1

wi
kf(xi

k) (1)

where f(.) is a function (e.g., f(xk) = xk when calculating the mean). As the
number of samples increases, the approximation becomes increasingly accu-
rate. In fact, the variance of the estimate in (1) can be shown to be upper-
bounded by a quantity that is proportional to 1

N .

3.1 Sequential Importance Sampling

Importance sampling [19] is a technique for approximating one pdf using
weighted samples from another pdf. A Sequential Importance Sampler (SIS)
involves applying importance sampling to the path10 through the state-space,

9 This can make it hard for a programmer to debug algorithmic implementations, partic-
ularly if the programmer is unfamiliar with debugging software performing lazy evaluation.
10 While the derivation involves consideration of a path, the resulting algorithm only needs

to store the most recent state.
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x1:k. The samples up to time k are also assumed to be generated by extending
the samples of the path up to time k − 1. This enables the weights in SIS to
be derived as [16]:

wi
k ∝

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
wi

k−1 (2)

where q(xk|xk−1, zk) is the proposal distribution used to generate xk and where

wi
1 ∝

p(z1|xi
1)p(xi

1)

q(xi
1)

(3)

where p(xi
1) and q(xi

1) are distributions associated with the initial state and
the initial distribution of samples (both at k = 1).

Note that, when each measurement is received, SIS involves sampling par-
ticles from q(xk|xk−1, zk) and then updating their weights using (2).

3.2 Degeneracy Problem

With the SIS algorithm, the variance of the importance weights can be proved
to increase over time [16]11. Empirically, this results in degeneracy: all but
one particle ends up having negligible normalised weights such that a single
particle dominates the weighted average in (1). A way to quantify this effect is
to calculate the effective sample size, Neff , introduced in [31] and estimated
as follows:

Neff =
1

∑N
i (wi

k)2
(4)

where, since 0 ≤ wi
k ≤ 1 and

∑N
k=1 w

i
k = 1, 1 ≤ Neff ≤ N .

3.3 Sequential Importance Resampling

Neff dropping below a threshold, NT , indicates that estimates are likely to be
inaccurate. The key to addressing this is to introduce resampling. The basic
idea of resampling is to eliminate samples with low importance weights and
replicate samples with larger weights12. While there are a number of variants
of the resampling algorithm, they all consist of two core stages: calculating
how many copies of each sample to generate; generating that number of copies
of each sample. The different resampling variants differ in terms of how their
calculate the number of copies to generate. We focus here on minimum vari-
ance resampling (also known as systematic resampling) which minimises the
errors inevitably introduced by the resampling process (and is discussed in
more detail in section 4.6). The use of resampling with SIS is often known as
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Algorithm 1 SIR Filter — Sequential (Vectorized) Version

1: Function sirFilter( p(x0), p(zκ|xκ), p(xκ|xκ−1), q(xκ|xκ−1, zκ) )
2: B p(x0): the initial prior
3: B p(zκ|xκ): measurement model
4: B p(xκ|xκ−1): dynamic model
5: B q(xκ|xκ−1, zκ): proposal
6: B Initialize the Particles
7: x0 ← drawSample(p(x0))
8: w0 ← 1

N
9: B The time step loop

10: for k = 1 to T do
11: B Importance Sampling
12: xk ← drawSample(q(xk|xk−1, zk))
13: BCalculate New Weights

14: w∗k ← wk−1
p(zk|xk)p(xk|xk−1)

q(xk|xk−1,zk)

15: B Normalise the Weights

16: wk ←
w∗k∑
w∗

k

17: B Calculate Effective Sample Size (ESS)
18: Neff ← 1∑

w2
k

19: B Perform Resampling if the ESS condition is satisfied
20: if Neff ≤ Nt then
21: B The m represents the number of copies
22: m← minimumVarianceResampling(wk)
23: (m,xk)← quickSort(m,xk)
24: xk ← redistribute(m,xk)
25: end if
26: B Estimate the Mean (or any other quantities of interest)

27: µk ←
∑

xk
N

28: end for
29: EndFunction

the Sampling Importance Resampling (SIR) filter and has been at the heart
of particle filters since their invention [17,28,30].

Algorithm 1 shows pseudocode for the SIR filter. Note that the algorithm
is expressed in vector notation, such that each vector operation implicitly
comprises at least one for loop, and in terms of building blocks that operate
on such vectors. The algorithm relies on a number of functions, which are
covered in detail later in this paper. Briefly these functions include:

– (a)← drawSample(q(.)) draws samples from the supplied distribution,
q(.);

– (m) ← minimumVarianceResampling(w) determines the number of times
each particle needs to be replicated. The function takes the particles’
weights, w, as input.

– (m,x) ← quickSort(m,x) calculates the permutation that would sort
vector m, and applies this permutation to both inputs. While this sort is
not necessary with a single processor implementation, we will exploit the
fact that the output has been sorted in section 4.8.2.

11 A good choice of proposal density can delay but not stop the effect [16].
12 This, of course, leads to a loss of diversity among the particles.
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– x′ ← redistribute(m,x) returns the new population of particles, x′,
where m, as mentioned previously, defines the number of replications of
each of the old population of particles, x.

3.4 Parallel Particle Filtering

The bulk of the operations comprising the particle filter (as described in Algo-
rithm 1) are readily parallelised. However, it is resampling (the redistribution
process in particular) that complicates parallel implementation of particle fil-
ters.

The complications primarily arise because, if each of multiple processors are
considering subsets of the particles, the data transfers that the redistribution
process demands are data-dependent. It is therefore non-trivial to implement
a particle filter in a way that the run-time is not data-dependent. A similar
problem has been encountered with sorting algorithms13. In the subsequent
sections of this paper, we describe how to implement the components of the
particle filter in a way that run-time in not data-dependent, but deterministic.

4 Parallel Instantiations of the Algorithmic Components of
Particle Filtering

Prior to mapping the particle filter algorithm on to a MapReduce form, it
is essential to understand how the operations used by a particle filter can
be implemented in a fully distributed form. While a more detailed discussion
of these operations (and others) can be found in [12], we now discuss each
of the operations that constitute the algorithm described in algorithm 1. We
summarise these operations and the associated complexities in table 1, both for
the fundamental building blocks and some of the algorithmic components that
can be built from those components. Our focus is on implementations with a
time-complexity that is as fast as possible in terms of its dependence on N , the
number of data. We discuss communication complexity for each algorithmic
component by considering a simplified memory architecture where transferring
a datum between two processors is considered to be a single data movement.

4.1 Element-wise Operations

Perhaps the simplest type of operation to implement in parallel involves ap-
plying an element-wise operation14. Given a function f and a vector v, the

13 For instance, although Quicksort [24] can be parallelised, the load distributions across
the processors is dependent on the pivots used and the run-time will therefore be data-
dependent.
14 Such operations are an example of ‘embarrassingly parallel’ operations that are arguably

trivial to parallelise.
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Table 1 Theoretical Complexities (in terms of time, space and total data transfers per
unit time) of Various Algorithmic Components of the Particle Filter with N data and P
processors.

Section Algorithmic Component Time Space Data Transfers

4.1 Element-wise operations O(1) O(N) O(1)
4.2 Rotation O(1) O(N) O(1)

4.3 Sum/Max/Min O(N
P

logN) O(N) O(P )

4.4 Cumulative Sum O(N
P

logN) O(N) O(P )

4.5 Normalising the Weights O(N
P

logN) O(N) O(P )

4.6 Minimum Variance Resampling O(N
P

logN) O(N) O(P )

4.7 (Bitonic) Sort O(N
P

(logN)2) O(N) O(P )

4.8.1 Redistribution from [34] O(N
P

(logN)3) O(N) O(P )

4.8.2 Improved Redistribution O(N
P

(logN)2) O(N) O(P )
6.1.1 Naive Redistribution O(N) O(N) O(1)

element-wise operation f 7→ v applies the function f on every element of the
vector such that:

f 7→ v = [f(v1), f(v2), . . . , f(vN )]

In our case, normalizing the weights is an example of an element-wise
operation. Another example is a vector of if operations, Vif(a,b, c) where the
ith element in the output is bi if ai is true and ci otherwise.

It should be evident that operations that involve two inputs and a single
output (e.g., element-wise sum or difference) are similarly easy to implement
in parallel and involves no data movement between processors.

4.2 Rotation

Another operation that we will use involves rotating (with wrapping (i.e.,
cyclic shift) or without) the elements of a vector by a given distance, δ, such
that if the input is a and the output is b, after the rotation, we have b(
mod (i + δ,N)) = a(i) where mod (x, y) is x modulus y. Once again, this
algorithmic component is readily parallelised with no data movements between
processors.

We will also use partial rotations such that we have a vector of distances,
∆, and not a single ‘global’ distance, δ. This vector, ∆, has N ′ < N elements
where N ′ is a power of two. The rotations are then implemented locally to
each set of M = N

N ′ elements. For example if the jth element of ∆ is δj then
b ((j − 1)×M + mod (i+ δj ,M)) = a ((j − 1)×M + i) for 1 ≤ i ≤M .

4.3 Sum, Max and other Commutative Operations

To calculate a sum of a vector of numbers, we can use an ‘adder-tree’. The
numbers are associated with the leaves of the tree. By recursing up the tree,
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the sum of pairs of numbers can be calculated (in parallel across all pairs).
The sum of all pairs of pairs of numbers can then be calculated (in parallel
across all pairs of pairs). This is exemplified in figure 2(a-c). This process can
repeat until we reach the root node of the tree and calculate the sum of all the
numbers by summing the sum of the two halves of the data. See figure 2(d).

In fact, as has been known since the development of the infamous Array
Programming Language (APL) [29], this same approach can be used for any
binary operation, ⊕, that is commutative such that:

((a⊕ b)⊕ c)⊕ d = (a⊕ b)⊕ (c⊕ d) (5)

Relevant examples of operations which can be calculated in this way include
the sum but also the maximum (and minimum) and first non-zero element of
a set of numbers (which we will denote First(.) in, for example, algorithms 2
and 3). For such operations, with N processors processing N data and a binary
tree, the time-complexity is the depth of the tree, i.e., log2N . Note that, near
the bottom of the tree, the total communication required is proportional to
the number of processors.

As should be evident, an upside-down version of the same tree can be used
to implement an Expand(a) operation, which involves making all elements of
a vector equal to the single value of a.

4.4 Cumulative Sum

While the ability to use a tree to calculate a sum efficiently is well known,
the ability to use a closely related approach to calculate a cumulative sum15

efficiently appears to be less well known by researchers working on particle
filters. Of course, a näıve implementation involves computing the cumulative
sum by simply adding each element of the input to the previous element of
the output. Such an approach would have a run-time of N . However, a more-
efficient approach has existed since the development of APL if not for longer16.

To ensure the reader has some intuition as to how this could be possible,
the key idea is to exploit the partial sums that are calculated in an adder-tree
and to express each element of the cumulative sum as a sum of these (efficiently
calculated) partial sums. The process that exploits this insight then involves a
second tree in which the values at every level are propagated to the level below,
replacing the values that were calculated in the adder-tree. More specifically,
in the downward propagation, the value at each parent node is propagated

15 Note that the cumulative sum is sometimes referred to as a prefix sum: there is no
difference between a prefix sum and a cumulative sum.
16 APL describes an approach to calculating a sum, maximum or minimum as reduction

operations. The approach to calculating a cumulative sum is described as a scan operation
and can be used to calculate, for example, cumulative maximums and minimums. Scan
operations take a binary operator ⊕ and an N -element vector a = [a1, a2, . . . , aN ], and
return an N -element vector a⊕ = [a1, (a1 ⊕ a2), . . . , (a1 ⊕ a2 ⊕ a3 ⊕ . . . ⊕ aN )]. However,
here we are only concerned with cumulative sums.
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Fig. 2 Example of cumulative sum for N=8 numbers. Subfigures (a)-(d) describe the sum
computation, while the remaining balanced binary trees shown in subfigures (e)-(g) describe
how the backward pass culminates in calculation of the cumulative sum of the given sequence.

to its right child and to its left child. The new value for the left child is the
difference between the value at the parent node and the value at the right
child node (as calculated in the adder-tree). The new value for the right child
is just the same value as the parent node. See figures 2(e)-(g) for an example.

With this forward and backward pass of the tree, we can obtain the cumu-
lative sum in 2 log2N steps.

4.5 Normalising the Weights

Normalising the weights is an example of an operation that can be imple-
mented using the building blocks described to this point. The sum is calculated
using an adder-tree (as described in section 4.3), distributed to all the data
(as also described in section 4.3) and an element-wise divide (see section 4.1)
used to calculate the normalised weights.

4.6 Minimum Variance Resampling

As explained in section 3.3, resampling involves determining the number of
copies of each particle that are needed. We specifically describe minimum
variance resampling, for which the number of copies of the ith particle is:

mi = bCi ×Nc − dCi−1 ×Ne+ 1 (6)
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where dxe and bxc are respectively the ceiling17 and the floor18 of x, where

Ci =

i∑

j=1

wi + ε (7)

is the cumulative sum and where ε ∼
[
0, 1

N

]
and C0 = 0.

(6) uses only element-wise operations (as described in section 4.1) and a
rotation (by a single element and as described in section 4.2). (7) involves a
cumulative sum (as described in section 4.4) and an addition (as described in
section 4.1). Thus, the building blocks described to this point can be used to
implement (6) and (7).

4.7 Sorting

Quicksort [24] is well known and has an average time complexity ofO(N log2N).
However, we focus on the bitonic sort algorithm [11], which has a time com-

plexity of O(N
P (log2N)

2
) and a spatial complexity of O(N). The number of

data movements at each iteration is P . The main reason for this choice is that
we want to guarantee the time taken to perform sorting. While it is possible
to parallelise quicksort, the ability to do so is data dependent. In contrast,
bitonic sort has deterministic time complexity (with a balanced load across
(up to) N processors).

At the fundamental level, a bitonic sequence forms the basis for the bitonic
sort. A sequence a = [a1, a2, . . . , aN ] is a bitonic sequence if a1 ≤ a2 ≤ . . . ≤
ak ≥ . . . ≥ aN for some k, 1 ≤ k ≤ N or if this condition holds for any rotation
of a.

To try to provide some intuition as to how the algorithm works, note that
at a certain point it the algorithm, we have N data in a bitonic sequence.
The first ‘half’ of the data are sorted in ascending order and the second half
are sorted in descending order19. Consider the ith element in the first half
and the ith element in the second half. There are N

2 − 1 data between these
two elements. They must all be larger than the smallest of the two elements
which the data are between. There must therefore be at least N

2 data that
are larger than the smallest of the two elements. This smallest element must
therefore be one of the lowest N

2 data (it cannot be one of the largest N
2 data

if there are at least N
2 data larger than it). An upside-down version of the

same argument makes clear that the largest of these two elements must be
one of the largest N

2 data. Finally, it also transpires that after this operation,

the first N
2 data are a bitonic sequence and the second N

2 data are a bitonic
sequence. Thus, given a bitonic sequence, by comparing all pairs of data that

17 The ceiling of x is the smallest integer larger than or equal to x.
18 The floor of x is the largest integer smaller than or equal to x.
19 A similar argument works if the first half are sorted in descending order and the second

half are sorted in ascending order.
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are a distance of N
2 apart and swapping the points if needed, we can ensure

all the larger elements are in the first N
2 data, which forms a bitonic sequence,

and all the smaller elements are in the second N
2 data, which also forms a

bitonic sequence. We can then apply the same comparison structure on each
of the two bitonic (smaller) sequences. This process can be applied recursively
until pairs of points are compared and the data are sorted.

This process is known as the ‘bitonic merge’ and requires O(log2N) steps
(with O(N) spatial complexity) to convert a bitonic sequence into a sorted
sequence. To generate the bitonic sequence needed from arbitrary input data20,
we apply bitonic sort to put the first N

2 input data into ascending order and

apply bitonic sort again to put the second N
2 input data into descending order.

Analysis of this recursive use of bitonic sort gives rise to bitonic sort requiring
n2−n

2 iterations where n = log2N and, at every step, the algorithm performs
N
2 comparisons. Each comparison involves comparing two data and swapping
them according to a criterion that is defined by the position of the comparison
in the network (and can be implemented using the building blocks described
in sections 4.1 and 4.2).

An example of bitonic sort with eight numbers is provided in figure 3.
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Fig. 3 Example of bitonic sort using eight numbers. Each horizontal wire corresponds to a
core. The blue color denotes that the larger value will be stored at the lower wire after the
comparison, while the green color the opposite.

4.8 Redistribution

4.8.1 Original Version from [34]

The redistribution algorithm takes two inputs, the old population of particles
x, and the number of copies m, and produces the new population of particles,
x∗, as the output.

In [34], a divide-and-conquer algorithm was described for implementing
the redistribute. The procedure involves sorting the particles in decreasing
order of the number of copies. With N data, the sum of the elements of m

20 This process is sometimes known as ‘bitonic build’.
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Fig. 4 An example of the redistribution for x = [10, 9, 12, 6, 1, 3, 14, 2] and m =
[3, 2, 2, 1, 0, 0, 0, 0] using the original and improved (new) redistribute. The original redis-
tribution always sorts the number of copies vector (bottom vector) in descending order,
while this is not required in the new redistribution (eg. see node no. 3).

must be N . The approach is then to divide the data into two smaller datasets,
each of which has N

2 elements and is such that the corresponding elements

of m are sorted and sum to N
2 . This can be achieved by finding the pivot,

which we define as leftmost element in m for which the associated value of
the cumulative sum is N

2 or greater. In general, the pivot needs to be split
into two constituent parts such that the two smaller datasets can both sum
to N

2 . We refer to these two parts as the left-pivot and right-pivot. The data
to the left of the pivot and including the left-pivot can be used to produce
one of the two smaller datasets. The right-pivot and the data to the right of
the pivot can be used to produce the other of the two smaller datasets. Both
smaller datasets are then sorted21 such that they are in decreasing order of
m. Note that there is a special case that occurs when the value of the right-
pivot is zero: the rotation needed is one less than otherwise in this case. It
can be intuitive to think of this procedure as operating on a tree. Applying
the procedure recursively down the tree, until the leaf nodes are encountered,
results in the redistribute completing. See figure 4 for an illustrative example
of this procedure.

A few points are worth highlighting: the operation of the algorithm is not
dependent on m, and so not dependent on the distribution of the weights; sort
can (somewhat counter-intuitively and seemingly unnecessarily) change the
order of numbers in a list when elements of the list are not unique; if no copies
of a particle are to be generated, the identity of the corresponding particle is
irrelevant to the eventual output of the algorithm.

The procedure can be described using element-wise operations (see sec-
tion 4.1), sum (see section 4.3), cumulative sum (see section 4.4), rotations
(see section 4.2) and sort (see section 4.7). Algorithm 2 provides a descrip-
tion of this algorithm. Note that the description makes use of three functions
(LeftHalf(.), RightHalf(.) and Combine(.)) which are included to aid exposition
(and actually have zero computational cost). Also note that the implementa-
tion is described in a way that involves recursion. It is possible to ‘unwrap’

21 The first dataset is actually already sorted, but the second dataset is, in general, not
sorted.
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the recursive implementation such that all operations (at all stages in the
tree) are implemented on datasets of the same size (a size of N). Doing so is
conceptually straightforward though the bookkeeping required is non-trivial.

Algorithm 2 Redistribute: O(N
P (log2N)3) implementation.

1: Function x = Redistribute(m,x)
2: B m: Number of copies (sorted in descending order)
3: B x: Particles
4: if Length(m) > 1 then
5: B Calculate Cumulative Sum
6: c← CumSum(m)
7: B Identify Pivot
8: ip ← First(c ≥ N

2
)

9: p← Expand(ip)
10: B Calculate Left-Pivot and Right-Pivot
11: B i simply indexes the elements of m and 0 is a vector of zeros
12: lp← Vif(i = p, c− N

2
,0)

13: rp← Vif(i = p, N
2
− Rotate(c, 1),0)

14: B Generate Smaller Datasets
15: l← LeftHalf(Vif(i < p,m, lp))
16: lx← LeftHalf(x)
17: r← Vif(i > p,m, rp)
18: B Calculate Rotation of r
19: inc← Sum(Vif(c = N

2
,1,0))

20: r← RightHalf(Rotate(r, ip + inc))
21: rx← RightHalf(Rotate(x, ip + inc))
22: B Sort Right Half
23: r← Sort(r)
24: B Divide-and-conquer
25: lx← Redistribute(l, lx)
26: rx← Redistribute(r, rx)
27: B Combine Outputs
28: x← Combine(lx, rx)
29: end if
30: EndFunction

The time complexity of this redistribution algorithmO(N
P (log2N)3) in par-

allel withN processors since a (bitonic) sort (with complexity ofO(N
P (log2N)2))

is used at each stage in the divide-and-conquer. Note that this contradicts
the (erroneous) claim in [34] that the time complexity of this algorithm is
O(N

P (log2N)2). The communication complexity is (again) P .

4.8.2 Improved Redistribution

The redistribution algorithm described in section 4.8.1 is a divide-and-conquer
algorithm that ensures that, at each node in the tree, m sums to its length, N ,
and is sorted. The sorting is sufficient to ensure that rotation can be used to
replace some of the (rightmost) zeros with the (rightmost) non-zero elements
of m that sum to N

2 .
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Here we exploit the observation that it is possible to define an alternative
divide-and-conquer strategy. More specifically, we ensure that, at each node
in the tree, m sums to its length, N , and has all its non-zero values to the
left of all values that are zero. Since such a sequence only has trailing zeros,
we call such a sequence an All-Trailing-Zeros (ATZ) sequence22. While a sort
is sufficient to generate an ATZ sequence, it is easier, as we will demonstrate
shortly, to generate an ATZ sequence than it is to generate a sorted sequence.

The new algorithm, at each node in the tree, starts with m, which sums to
its length, N , and is an ATZ sequence. To proceed, as previously, we find the
pivot (as defined in section 4.8.1). As previously, the data to the left of the
pivot and the left-pivot can be used to produce one of the two smaller datasets.
However, in contrast to the approach described in section 4.8.1, we can simply
use the right-pivot and the data to the right of the pivot to generate the second
smaller dataset (without any need for sort). Both these smaller datasets then
sum to N

2 and are ATZ sequences. Note that, as with the approach described
in section 4.8.1, there is a special case that occurs when the value of the right-
pivot is zero.

To initiate the algorithm, we need to generate an ATZ sequence. To achieve
this, we propose to use (bitonic) sort (once). After this initial sort, the proce-
dure can be described using element-wise operations (see section 4.1), sum (see
section 4.3), cumulative sum (see section 4.4) and rotations (see section 4.2).
We emphasise that there is no need for a sort after the initial generation of
an ATZ sequence. As a result, while the algorithm described in section 4.8.1
has time-complexity of O(N

P (log2N)3), the algorithm described in this section

has time-complexity of O(N
P (log2N)2). Notice that the number of data move-

ments is still P . To aid understanding algorithm 3 provides a description of
this algorithm. Note the very strong similarity to algorithm 2 and that, once
again, it is possible to ‘unwrap’ the recursive implementation albeit with some
non-trivial bookkeeping.

5 Mapping Particle Filtering into MapReduce

The descriptions provided in the section 4 describe distributed operations that
can manipulate vectors (albeit after some unwrapping of the recursive descrip-
tions).

As discussed in the section 2.2, the fundamental notion of MapReduce is
the processing of (key, value) pairs. In the context of particle filtering, none of
the properties of the particles (weight or state) qualifies to be a key. However,
we can give each particle a unique index and use this index as the key, such
that we think of the particles as being a set {i, xi, wi} where i ∈ {1, . . . , N}
and, as previously, where N is the number of particles, xi is the state and wi

is the corresponding weight of the ith particle.

22 We suspect such a sequence may have a name in a literature we do not currently have
sight of. However, here we simply adopt an intuitive name for ease of exposition.
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Algorithm 3 Redistribute: O(N
P (log2N)2) implementation.

1: Function x = Redistribute(m,x)
2: B m: Number of copies (in an ATZ sequence)
3: B x: Particles
4: if Length(m) > 1 then
5: B Calculate Cumulative Sum
6: c← CumSum(m)
7: B Identify Pivot
8: ip ← First(c ≥ N

2
))

9: p← Expand(ip)
10: B Calculate Left-Pivot and Right-Pivot
11: B i simply indexes the elements of m and 0 is a vector of zeros
12: lp← Vif(i = p, c− N

2
,0)

13: rp← Vif(i = p, N
2
− Rotate(c, 1),0)

14: B Generate Smaller Datasets
15: l← LeftHalf(Vif(i < p,m, lp))
16: lx← LeftHalf(x)
17: r← Vif(i > p,m, rp)
18: B Calculate Rotation of r
19: inc← Sum(Vif(c = N

2
,1,0))

20: r← RightHalf(Rotate(r, ip + inc))
21: rx← RightHalf(Rotate(x, ip + inc))
22: B Divide-and-conquer
23: lx← Redistribute(l, lx)
24: rx← Redistribute(r, rx)
25: B Combine Outputs
26: x← Combine(lx, rx)
27: end if
28: EndFunction

Details Single Node System Multi-Node System

Name Platform 1 Platform 2
Number of Nodes 1 28
Hardware Cores 16 512
Operating System Linux IBM Unix
Primary Memory 16GB 384GB
Spark Version 1.6.2 1.4.1
Hadoop Version 2.7.2 2.7.1

Table 2 Details of the Experimental Platform used for Evaluation.

6 Evaluation

We performed extensive evaluation of our algorithm on two different systems.
We provide the details of these systems in table 2. The evaluation process
included the algorithms outlined in the section 4 on the two key frameworks
that support MapReduce and which were mentioned in section 2: Hadoop
and Spark. We used the standard estimation problem (involving a scalar state
and a computationally inexpensive proposal, likelihood and dynamic model)
that is widely used in the particle filtering community [7]. We perceive this
scenario emphasises the need for efficient resampling: were, as is often the
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case, the likelihood, dynamics and proposal were computationally demanding,
the relative merits of different resampling schemes would be less apparent.
Our evaluation focused on specific aspects of the implementation, which are
described as follows:

1. We start, in section 6.1, by providing evidence that, in contrast to a näıve
implementation, the particle filter we have developed can exploit multi-core
architectures while having deterministic run-time.

2. In section 6.2, as a precursor to a detailed evaluation and analysis, we anal-
yse the overall profile of the particle filtering algorithm for implementations
on a single core, using Hadoop and using Spark.

3. Then, in section 6.3, for both the Spark and Hadoop implementations, we
compare the performance of our new algorithms relative to a single map-
per and a single reducer. In doing so, we not only compare the overall
performance, but we also compare the fundamental building blocks of the
particle filtering algorithm. This section provides a thorough understand-
ing of these algorithms’ performance on two key frameworks that support
MapReduce.

4. Given that the Spark implementation (unsurprisingly) outperforms the
Hadoop implementation, we then focus on the Spark implementation. In
section 6.4 we then compare the two versions of the redistribution algo-
rithm described in sections 4.8.1 and 4.8.2 as a function of the numbers
of particles and cores. The intent is that this detailed comparison pro-
vides insight into the performance that is achievable using the original and
proposed variants of the redistribution algorithm.

5. Finally, in section 6.5, we perform a detailed analysis on the speedup and
scalability of the redistribution and the overall particle filter.

In performing these evaluations, a basic parameter that we found useful in
assessing the algorithmic performance is the capability to process large amount
of data, which directly translates to the number particles that can be processed
per unit time, the number of Particles Processed per Second (PPS).

6.1 Worst Case Runtime Performance

6.1.1 Baseline Redistribution Algorithm

We will compare performance against a näıve baseline implementation of the
redistribution component. This implementation involves calculation (in paral-
lel) of a cumulative sum of the number of copies. Once this cumulative sum is
calculated (and each element of the sum communicated to be processed along
with its neighbour), for each particle in the old population, we know the first
and last indices of particles in the new population that will be copies of this
particle in the old population. Then, by performing a loop across the particles
in the old population, we can populate the new generation of particles (Al-
gorithm 4). In MapReduce a map function is used for the outer for loop and
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within each map we iterate as many times as needed according to the number
of copies elements.

Algorithm 4 Redistribute: O(N) implementation.

1: Function x∗ = Redistribute(m,x)
2: B m: Number of copies
3: B x: Particles
4: B x∗: New population of Particles
5: i← 0
6: for j = 0 to N do
7: for k = 0 to m[j] do
8: BNew Population of Particles
9: x∗[i]← x[j]

10: i← i + 1
11: end for
12: end for
13: EndFunction

Note that this algorithm, when running across multiple cores, can be ex-
pected to have a runtime complexity that is dependent on the data. To help
make this clear, consider the worst case where the redistribution involves mak-
ing N copies of the ith particle (and zero copies of all other particles). In this
case, only one core will actually be populating the new generation of particles.

6.1.2 Runtime Performance and Variability

We investigated the worst-case performance of such a näıve parallel imple-
mentation of the redistribution component and compared with our proposed
implementation (using a Spark implementation). The results are shown in fig-
ures 5 and 6 for the worst-case (where the new population of particles are all
copies of a single member of the old population). It should be evident that as
the number of cores increases, the runtime of the proposed (almost) never in-
creases23. In contrast, while the runtime of the näıve implementation initially
decreases as the number of cores is increased, it then increases (i.e., such that
it is faster in absolute terms to use 8 not 16 cores with Platform 1 and such
that it is faster to use less than 50 cores not 512 cores with Platform 2). The
reason for the decrease is that the MapReduce framework can use the extra
cores to more rapidly process the (many) zeros in the vector describing the
number of copies. The reason for the subsequent increase in processing time
is that the additional overhead of having multiple cores becomes increasingly
significant if only one of the cores is doing the vast majority of the processing.

It should also be evident that the absolute runtime (on these platforms
and with our current Spark implementation) of the deterministic and non-
deterministic variants differ significantly such that the näıve implementation

23 In subsequent sections, we will investigate how and when the decrease in runtime occurs
in more detail.



MapReduce Particle Filtering with Exact Resampling and Deterministic Runtime 21

0 2 4 6 8 10 12 14 16

Number of Cores

5

10

15

20

25

30

R
un

T
im

e 
(s

ec
on

ds
)

Non-Deterministic

218

219

220

221
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Fig. 5 Worst-case performance of Redistribution: Platform 1.

can be approximately 20 times faster (in the contexts of both platforms).
This is disappointing and does motivate future work to refine our (initial)
implementation. However, we perceive that there are applications where a
slower but deterministic runtime is preferable to a faster but data-dependent
runtime. In the contexts of such applications, particularly given the scope to
improve the implementation, we perceive our algorithm (if not our current
implementation) has utility.

To assess the variation in runtime that we experience empirically when con-
sidering different distributions of the weights, we compared the performance
in the context of the worst-case scenario with the performance in the best-case
scenario24. Figure 7 describes the average runtime (as well as the minimum
and maximum runtimes) over five runs. It is immediately clear that the fluc-
tuations between the runs are smaller in the context of the deterministic than
in the context of the näıve non-deterministic algorithm. What is perhaps less
clear, but still discernable, is that the average run-time for the deterministic
redistribute is impacted less by moving from the worst-case to the best-case
scenario than the näıve non-deterministic redistribute. We believe that this
modest difference points to the run-time being dominated by things other
than the algorithmic choice: for example, MapReduce’s overheads (which are
common to both algorithms implementations).

6.2 Overall Profile

We now compare performance of three implementations of a particle filter:
a sequential implementation (in Java and using quicksort in place of bitonic
sort); an implementation in Hadoop; an implementation in Spark. All imple-
mentations involve a single core and Platform 1. Figure 8 shows the proportion
of the runtime that is associated with: redistribution; sort; Minimum Variance
Resampling (MVR); the remaining components (e.g., sum, cumulative sum,
diff, scaling).

24 With N particles, the best-case involves replicating each particle exactly once.
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Fig. 6 Worst-case performance of Redistribution: Platform 2.
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Fig. 8 Overall runtime profile of the particle filtering algorithm for the following imple-
mentations: (a) Sequential; (b) Hadoop; (c) Spark with 217 particles; (d) Spark with 220

particles.

As can be observed from figure 8, the majority of the time taken is devoted
to the redistribution component. Note that, for the Spark implementation, a
significant fraction of the remaining time is spent on the sorting component
and the fraction of time devoted to redistribution and sorting increases as the
number of particles is increased.
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Fig. 9 Summation and Cumulative Summation on Spark and Hadoop.

6.3 Comparison of Hadoop and Spark

We next investigate how the choice of middleware impacts performance in
the context of the components of the algorithm and in the context of the
entire particle filter algorithm. All implementations involve a single core and
Platform 1.

6.3.1 Sum and Cumulative Sum

Figure 9 shows the comparative performance of the sum and cumulative sum
components in these two key frameworks.

With respect to the number of particles processed per second (PPS), the
performance using Spark is far superior to that achieved using Hadoop. This
stems from the issues discussed in section 2: Spark uses RDDs to makes use
of memory (and lazy evaluation) whereas Hadoop only uses the file system
(HDFS) to transfer data from the output of one operation to the input of the
next.

It is apparent in both frameworks (and particularly apparent in the context
of Spark) that, as the number of particles increases, the number of particle
processed per second also increases. This is because with more particles, the
overheads associated with setting up (and tearing down) the mappers and
reducers are increasingly offset by the parallel operations that make use of the
mappers and reducers. The limited extent to which this effect is observed in
the context of Hadoop highlights that the overheads associated with opening
files in HDFS are significant.

Since, as explained in section 4, calculating a summation involves one adder
tree and cumulative sum involves two such trees, we should expect the number
of particles per second for the cumulative sum to be approximately half that
for the summation. A comparison of the two graphs in figure 9 makes clear
that this is indeed (approximately) the case for both frameworks and for all
input sizes.
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Fig. 10 Bitonic Sort and Minimum Variance Resampling on Spark and Hadoop.

6.3.2 Bitonic Sort and Minimum Variance Resampling

Figure 10 shows the performance for two independent components, bitonic sort
and minimum variance resampling. The performance of minimum variance
resampling is relatively close to the performance of the cumulative sum (see
Figure 9). This is expected since, as explained in section 4, minimum variance
resampling includes a cumulative sum.

Once again and for the same reasons as discussed in section 6.3.1, we notice
the same difference in performance between the Spark and Hadoop implemen-
tations. As one might expect and as before, for minimum variance resampling,
the number of particles per second increases with the number of particles.
However, it is noteworthy that, for bitonic sort with Spark, the number of
particles per second decreases for large numbers of particles. On investigating
this in some detail, we observed that the lineages used to facilitate the lazy
evaluation in Spark25 become very large with large numbers of particles. This
appears to cause Spark to become less efficient when the number of particles
becomes large.

6.3.3 Redistribution and Overall Performance

Finally, figure 11 shows the comparative performance of the redistribution
algorithm (as described in algorithm 3) and the overall particle filtering algo-
rithm.

Once again, we notice the same differences between Hadoop and Spark. In
the context of the overall particle filter and for the largest number of particles
considered, these differences are manifest in Spark, relative to Hadoop, offering
a considerable speedup (approximately 25-fold26).

The overall performance of the particle filtering algorithm, when imple-
mented in Spark, decreases for large numbers of particles. Again, on investi-

25 Since Hadoop does not attempt lazy evaluation or use such lineages for another purpose,
the same phenomenon is not observed in the context of Hadoop.
26 In the particle filter the resampling is executed in every iteration. Thus the aforemen-

tioned figures correspond to a worst-case speedup.
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Fig. 11 Redistribution and the Overall Particle Filtering on Spark and Hadoop.
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Fig. 12 Performance of the two variants of the Redistribution Component (using Spark).

gation, this appears to be caused by large lineages associated with the large
number of particles. Finally, we note that the bitonic sort and redistribution
components appear to be limiting the number of particles per second that can
be processed by the overall particle filtering algorithm.

6.4 Impact of Using Multiple Cores

We now focus on the Spark implementation (with Platform 1) and compare
the performance of the two variants of the redistribution component in iso-
lation and in the context of the overall performance of a particle filter. More
specifically, we investigate how performance scales with the number of cores
and the number of particles.

6.4.1 Redistribution Component in Isolation

Figure 12 compares the performance of the two versions of the redistribution
component as a function of the number of particles and number of cores.

On a core-to-core basis, the O((log2N)
2
) redistribution component outper-

forms the O((log2N)
3
) component across all numbers of particles by a margin

of up to a factor of approximately 4 (for 16 cores).
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Fig. 13 Performance of the overall particle filter using the two variants of the redistribution
component.

For all numbers of particles, increasing the number of cores improves per-
formance for both variants of the redistribution component. However, in the
context of both variants, the improvement in performance when considered as
a ratio is less than the ratio of the number of cores.

In the context of the O(N
P (log2N)

3
) variant, increasing the number of

particles for a fixed number of cores can significantly reduce the number of
particles processed per second. This is not the case for the O(N

P (log2N)
2
)

variant.

For the O(N
P (log2N)

2
) variant, increasing the number of particles while

keeping the number of cores constant improves the number of particle pro-
cessed per second. However, in the context of the O(N

P (log2N)
3
) variant,

increasing the number of particles for a fixed number of cores can reduce the
number of particles processed per second.

6.4.2 Resulting Overall Particle Filter Performance

Figure 13 compares the performance of the original particle filtering algorithm
when using the two variants of the redistribution component.

The comparative performance that was observed in the context of the
redistribution component in isolation is also evident when comparing the per-
formance of the overall particle filter. Indeed, the use of the O(N

P (log2N)2)
variant of redistribution results in (approximately) a fourfold increase in the
number of particles processed per second. The trends that were observed in
the context of the redistribution component in isolation are also apparent in
the context of the overall particle filter.

6.5 Speedup and Scalability Analysis

We now focus on the speedup that the O(N
P (log2N)2) variant of the redistribu-

tion component offers relative to the O(N
P (log2N)3) variant and the scalability
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(log2N)2) variant of the Redistribu-
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Fig. 15 Relative Speedup and Scalability of the O(N
P

(log2N)2) variant of the Redistribu-
tion component on Platform 2.

of the O(N
P (log2N)2) variant, i.e., the extent to which using more cores im-

proves performance.
We quantify speedup as the ratio of the number of particles per second for

a fixed number of particles and number of cores. We quantify scalability, in the
context of a fixed number of particles27, as the ratio of the number of particles
per second with N cores relative to the number of particles per second with a
single core.

We compare performance in the context of both platforms for various dif-
ferent numbers of particles.

6.5.1 Redistribution Component in Isolation

Figures 14 and 15 describe the speedup and scalability of the O(N
P (log2N)2)

redistribution component in the context of platforms 1 and 2 respectively.
We note that the relative speedup of the O(N

P (log2N)2) variant of the re-

distribution component (relative to the O(N
P (log2N)3) variant) is significant

27 Since the problem size remains fixed, we are actually quantifying strong scaling [23].
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Fig. 16 Relative Speedup and Scalability of the overall particle filter algorithm using the
O(N

P
(log2N)2) variant of the Redistribution component on Platform 1.

in all cases: between 2 (on Platform 1) and 24 (on Platform 2). For both plat-
forms, this speedup increases as the number of particles is increased. However,
we also note that, with Platform 1 (which has a single node such that all cores
share memory), the speedup decreases as the number of cores is increased for a
fixed number of particles. In contrast, with platform 2, the speedup is broadly
constant for large numbers of cores.

We also note that the scalability of the O(N
P (log2N)2) variant of the redis-

tribution component is far from ideal: increasing the number of cores culmi-
nates in minimal (if any) improvements in performance. This occurs because,
in the context of both Platforms, it is the communication, and not the com-
putation, that is limiting performance. This also explains why Platform 2’s
larger number of cores does not offer improved scalability relative to Platform
1: in Platform 2, the processors are distributed across multiple nodes and com-
municate across a network, whereas Platform 1’s processors are all part of the
same node and so communicate using shared memory.

6.5.2 Resulting Overall Particle Filter Performance

Figures 16 and 17 describe the speedup and scalability of the overall parti-
cle filter using the O(N

P (log2N)2) redistribution component in the context of
platforms 1 and 2 respectively.

The speedups, as measured in the context of the overall particle filter algo-
rithm are between 3 and 9.5. Again, for both platforms, the speedup increases
with the number of particles. Again, the scalability is far from ideal.

6.6 Discussion

The goal of the research of which this paper is part is to dramatically reduce
the execution time of particle filters. While we have gained significant insights
from the performance analysis described herein (and hope that the paper will
help others to also capitalise on those insights), the results described herein are
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ultimately disappointing: using the combination of algorithms and hardware
considered herein, we are unable to improve on the execution speed achieved
by a na/”ive redistribute implementation.

At one level, this is because the baseline against which we are comparing
performance is relatively simple and mature. Our implementation is therefore
relatively well optimised. In contrast, our proposed implementation is novel
and has not been significantly optimised. However, we don’t see it as fruitful
to optimise our current implementation: we believe the disappointing results
are caused by two other issues.

The first issue is that, in our implementations, we have assumed that each
particle has a unique key in the MapReduce framework. There are therefore as
many keys as there are particles. To understand the potential benefit of having
more than one value per key, we investigated how the performance of summa-
tion (in the context of a single core in Platform 1 and 220 values) changes as
a function of the number of values per key. Figure 18 highlights that, for the
example of summation in the context of a specific hardware configuration, a
fourfold improvement in execution speed is possible by changing the number
of values per key. This implies that runtime could change significantly if other
components considered multiple particles to be associated with each key.

However, the primary issue which appears to be limiting runtime is the
very MapReduce framework itself. As discussed in Section 2.2, before every
Reduce operation, the values associated with each key are collated. This is
a useful feature in the context of applications where the number of values
associated with each key and the number of unique keys are unknown (e.g.,
where the task is to count up the number of occurrences of each word in a set
of documents). However, in the particle filter considered herein, the number
of unique keys is known to be the number of particles and the algorithms are
chosen such that the number of values for each key are pre-defined for each
algorithmic component. The flexibility that MapReduce provides is therefore
of no utility in the context of the particle filter implementation. That lack
of utility is not per-se an issue. What is an issue is that the flexibility is
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Fig. 18 Performance of summation using Spark with a fixed total number of values com-
prised of different number of keys and therefore different numbers of values per key.

achieved through a (somewhat hidden) “shuffle-and-sort” phase that precedes
every Reduce operation. This phase (self-evidently from the name) includes a
(single-core) sort of all keys. This sort is demanding in terms of communication
and processing. So, every time MapReduce is used to perform even simple
operations (e.g., cumulative sum), it is likely that the infrastructure is actually
collating the keys and sorting them. Given the number of simple operations
involved in our particle filter operation, we perceive it is this overhead that is
dominating execution time.

This paper therefore motivates consideration of alternative frameworks
which don’t provision for the same flexibility as MapReduce and therefore
don’t have the same overheads. Our future work will therefore consider re-
thinking the entire manifestation of the implementation in alternative lower-
level frameworks (e.g., using Message Passing Interface (MPI), a framework
designed for HPC applications).

7 Related Work

A review of different resampling techniques is provided in [32]. This review
makes clear that, at first sight, some of the key components of a particle filter,
notably cumulative sum and redistribution, are inherently sequential28.

Indeed, this thinking has motivated research (e.g., as described in [13])
into approaches where a (small) number of Processing Elements (PEs) each
perform local resampling and then communicate via a central process that,
for example, allocates the particles to the PEs (a process that, as demon-
strated in section 6, results in non-deterministic run-time). In contrast to the
approaches involving communication between PEs, this paper is focused on a

28 The review also highlights challenges associated with, for example, multiple processors
generating independent random number sequences, discusses the relative merits of using
floating-point and fixed-point numbers and points to papers discussing architecture-specific
issues (e.g., in [20,21,26,27]).
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fully distributed algorithm (with no explicit central process and so no implicit
assumption of a small number of PEs).

The detailed comparison of different (single processor implementations of)
resampling algorithms provided in [25] highlights that systematic resampling
offers the best performance amongst the approaches considered. One strategy
for parallel implementation (discussed in [13] and explored in more detail else-
where [36]) is to deliberately choose an alternative resampling algorithm such
that the alternative algorithm is more amenable to parallel implementation.
This paper focuses on systematic resampling specifically.

Another approach that [32] highlights involves each particle performing re-
sampling using only information from its local neighbours (e.g., as described
in [35], which, in the view of the authors, does not make obvious that, if the
resampling is performed locally then the weight after resampling should be
proportional to the local normalising constant29). In contrast to approaches
based on considering only local neighbours, this paper describes approaches
that provide exactly the same output as a single processor would have gener-
ated.

Research not explicitly covered in the aformentioned review includes the
implementation described in [34] and which this paper explicitly builds upon.
That implementation achieves O(N

P (logN)3) time-complexity with N parallel
processors (and achieves a run-time that is not data dependent). Other related
research includes (in [41]) a more complex, parallelised particle filter that uses
a context-aware scheduling algorithm. They address the load imbalance arising
from the näıve parallelisation of the particle filtering by using a custom (but
reusable) scheduler. In this paper, we replace the use of such a scheduler at
run-time by algorithmic development at design-time.

There has been previous work on implementing particle filters in a MapRe-
duce context (e.g., in [9, 10]). However, this research has focused on using
Hadoop and has not included a similar analysis to that documented in sec-
tion 6 of this paper. Our analysis in that section of this paper indicates that
substantial improvements are possible using Spark but also highlights that the
speed-up offered using MapReduce and large numbers of processors is some-
what disappointing.

8 Conclusions

In this paper we have developed an improved parallel particle filtering algo-
rithm. The core novelty is a novel redistribution component. The component

29 More mathematically, assume the ith particle has a weight (before resampling) of wi
and the jth member of the new population is resampled as a copy of the ith particle with
probability of wi∑

i′∈Ij
wi′

where Ij is the set of particles that are local to the jth particle.

The (unnormalised) weight after resampling (based on considering the resampling process

in terms of importance sampling) is wi ×
∑

i′∈Ij
wi′

wi
=

∑
i′∈Ij wi′ . The normalised weight

would then be proportional to this unnormalised weight, but scaled such that the normalised
weight sums to one over all particles.
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provides deterministic run-time and a time-complexity of O(N
P (logN)2) (with

N particles and N processors). This improves on a previous approach that
achieved a time-complexity of O(N

P (logN)3).
A particle filter (including both the previous and new redistribution com-

ponents) has been implemented using two Big Data frameworks, Hadoop and
Spark. Rather than assume that the performance of such an implementation
will be faster than a single-core version, extensive performance evaluation has
been conducted. Our new component outperforms the original version in iso-
lation and when considering a particle filter that uses the new component in
place of the original version. Our results indicate that, in the context of a par-
ticle filter, Spark’s ability to perform calculations in memory enable it to offer
a 25-fold improvement in run-time relative to Hadoop. Using Spark and our
new component, we go on to show that, as the number of particles increases,
so does the implementation efficiency.

This performance evaluation highlights that it is not always valid to assume
that porting algorithms to Big Data frameworks will result in an increase in
execution speed. Indeed, the implementation we evaluated is limited by the
communications overhead necessarily associated with giving each particle a
unique key in the MapReduce framework: as a result, while we can achieve a
speed-up of 3-fold with 16 cores in a single node, with 512 cores spread across
28 nodes, we only achieve a speed-up of approximately 1.4 (i.e., less). Further-
more, our implementation is outperformed by a näıve implementation by a
factor of approximately 20. Put simply, using our current implementation, we
cannot yet outperform an (optimised) single processor resampling algorithm.

Of course, there will be applications where resampling is a small fraction
of the total computational cost of the particle filter. In such contexts, the pro-
posal, likelihood and/or dynamic model will be computationally demanding to
calculate. These components of the particle filter are trivial to parallelise. Our
future work will aim to broaden the applicability of our results beyond those
applications. More specifically, we plan to focus on architectures involving a
single key being related to multiple particles, explicitly minimising the need
for data movement and removing the large lineages that appear to be limiting
the performance possible using Spark.

Finally, we note that we have made our implementations available for pub-
lic access via an OpenSource repository at GitHub as particlefilter [6].
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