13,147 research outputs found
On the Hamilton-Jacobi Theory for Singular Lagrangian Systems
We develop a Hamilton-Jacobi theory for singular lagrangian systems using the
Gotay-Nester-Hinds constraint algorithm. The procedure works even if the system
has secondary constraints.Comment: 36 page
Surfactant induced smooth and symmetric interfaces in Cu/Co multilayers
In this work we studied Ag surfactant induced growth of Cu/Co multilayers.
The Cu/Co multilayers were deposited using Ag surfactant by ion beam sputtering
technique. It was found that Ag surfactant balances the asymmetry between the
surface free energy of Cu and Co. As a result, the Co-on-Cu and Cu-on-Co
interfaces become sharp and symmetric and thereby improve the thermal stability
of the multilayer. On the basis of obtained results, a mechanism leading to
symmetric and stable interfaces in Cu/Co multilayers is discussed.Comment: 7 Pages, 7 Figure
Discretization-related issues in the KPZ equation: Consistency, Galilean-invariance violation, and fluctuation--dissipation relation
In order to perform numerical simulations of the KPZ equation, in any
dimensionality, a spatial discretization scheme must be prescribed. The known
fact that the KPZ equation can be obtained as a result of a Hopf--Cole
transformation applied to a diffusion equation (with \emph{multiplicative}
noise) is shown here to strongly restrict the arbitrariness in the choice of
spatial discretization schemes. On one hand, the discretization prescriptions
for the Laplacian and the nonlinear (KPZ) term cannot be independently chosen.
On the other hand, since the discretization is an operation performed on
\emph{space} and the Hopf--Cole transformation is \emph{local} both in space
and time, the former should be the same regardless of the field to which it is
applied. It is shown that whereas some discretization schemes pass both
consistency tests, known examples in the literature do not. The requirement of
consistency for the discretization of Lyapunov functionals is argued to be a
natural and safe starting point in choosing spatial discretization schemes. We
also analyze the relation between real-space and pseudo-spectral discrete
representations. In addition we discuss the relevance of the Galilean
invariance violation in these consistent discretization schemes, and the
alleged conflict of standard discretization with the fluctuation--dissipation
theorem, peculiar of 1D.Comment: RevTex, 23pgs, 2 figures, submitted to Phys. Rev.
Mixing Time Scales in a Supernova-Driven Interstellar Medium
We study the mixing of chemical species in the interstellar medium (ISM).
Recent observations suggest that the distribution of species such as deuterium
in the ISM may be far from homogeneous. This raises the question of how long it
takes for inhomogeneities to be erased in the ISM, and how this depends on the
length scale of the inhomogeneities. We added a tracer field to the
three-dimensional, supernova-driven ISM model of Avillez (2000) to study mixing
and dispersal in kiloparsec-scale simulations of the ISM with different
supernova (SN) rates and different inhomogeneity length scales. We find several
surprising results. Classical mixing length theory fails to predict the very
weak dependence of mixing time on length scale that we find on scales of
25--500 pc. Derived diffusion coefficients increase exponentially with time,
rather than remaining constant. The variance of composition declines
exponentially, with a time constant of tens of Myr, so that large differences
fade faster than small ones. The time constant depends on the inverse square
root of the supernova rate. One major reason for these results is that even
with numerical diffusion exceeding physical values, gas does not mix quickly
between hot and cold regions.Comment: 23 pages, 14 figures that include 7 simulation images and 19 plots,
accepted for publication at Ap
Delphi sobre la política sanitaria española en el siglo XXI
El presente trabajo recoge parte de una investigación sociológica sobre los problemas fundamentales del sector sanitario español utilizando un Delphi. Se realiza durante la década de los noventa a una conjunto de los mejores expertos españoles (varones y mujeres) sobre salud y sanidad. La investigación supone la definición de quince problemas específicos sobre la descentralización y reforma del sistema sanitario español. Todas las personas de la muestra contestan a las quince preguntas base, y las entrevistas son luego transcritas. A continuación aparece un análisis sobre las diversas actitudes, razonamientos, y opiniones sobre la política sanitaria en España de cara al siglo XXI. Se presenta una agenda de problemas para resolver desde la política sanitaria tanto pública como privada. Es un documento indispensable para analizar las políticas públicas respecto del sector sanitario español
Spin States Protected from Intrinsic Electron-Phonon-Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe
We present time-resolved Kerr rotation measurements, showing spin lifetimes
of over 100 ns at room temperature in monolayer MoSe. These long lifetimes
are accompanied by an intriguing temperature dependence of the Kerr amplitude,
which increases with temperature up to 50 K and then abruptly switches sign.
Using ab initio simulations we explain the latter behavior in terms of the
intrinsic electron-phonon coupling and the activation of transitions to
secondary valleys. The phonon-assisted scattering of the photo-excited
electron-hole pairs prepares a valley spin polarization within the first few ps
after laser excitation. The sign of the total valley magnetization, and thus
the Kerr amplitude, switches as a function of temperature, as conduction and
valence band states exhibit different phonon-mediated inter-valley scattering
rates. However, the electron-phonon scattering on the ps time scale does not
provide an explanation for the long spin lifetimes. Hence, we deduce that the
initial spin polarization must be transferred into spin states which are
protected from the intrinsic electron-phonon coupling, and are most likely
resident charge carriers which are not part of the itinerant valence or
conduction band states.Comment: 18 pages, 17 figure
Ordering and finite-size effects in the dynamics of one-dimensional transient patterns
We introduce and analyze a general one-dimensional model for the description
of transient patterns which occur in the evolution between two spatially
homogeneous states. This phenomenon occurs, for example, during the
Freedericksz transition in nematic liquid crystals.The dynamics leads to the
emergence of finite domains which are locally periodic and independent of each
other. This picture is substantiated by a finite-size scaling law for the
structure factor. The mechanism of evolution towards the final homogeneous
state is by local roll destruction and associated reduction of local
wavenumber. The scaling law breaks down for systems of size comparable to the
size of the locally periodic domains. For systems of this size or smaller, an
apparent nonlinear selection of a global wavelength holds, giving rise to long
lived periodic configurations which do not occur for large systems. We also
make explicit the unsuitability of a description of transient pattern dynamics
in terms of a few Fourier mode amplitudes, even for small systems with a few
linearly unstable modes.Comment: 18 pages (REVTEX) + 10 postscript figures appende
On the relation between virial coefficients and the close-packing of hard disks and hard spheres
The question of whether the known virial coefficients are enough to determine
the packing fraction at which the fluid equation of state of a
hard-sphere fluid diverges is addressed. It is found that the information
derived from the direct Pad\'e approximants to the compressibility factor
constructed with the virial coefficients is inconclusive. An alternative
approach is proposed which makes use of the same virial coefficients and of the
equation of state in a form where the packing fraction is explicitly given as a
function of the pressure. The results of this approach both for hard-disk and
hard-sphere fluids, which can straightforwardly accommodate higher virial
coefficients when available, lends support to the conjecture that
is equal to the maximum packing fraction corresponding to an ordered
crystalline structure.Comment: 10 pages, 6 figures; v2: discussion about hard-square and
hard-hexagon systems on a lattice added; five new reference
Synthesis, Photochemical, and Redox Properties of Gold(I) and Gold(III) Pincer Complexes Incorporating a 2,2′:6′,2″-Terpyridine Ligand Framework
Reaction of [Au(C6F5)(tht)] (tht = tetrahydrothiophene) with 2,2′:6′,2″-terpyridine (terpy) leads to complex [Au(C6F5)(η1-terpy)] (1). The chemical oxidation of complex (1) with 2 equiv of [N(C6H4Br-4)3](PF6) or using electrosynthetic techniques affords the Au(III) complex [Au(C6F5)(η3-terpy)](PF6)2 (2). The X-ray diffraction study of complex 2 reveals that the terpyridine acts as tridentate chelate ligand, which leads to a slightly distorted square-planar geometry. Complex 1 displays fluorescence in the solid state at 77 K due to a metal (gold) to ligand (terpy) charge transfer transition, whereas complex 2 displays fluorescence in acetonitrile due to excimer or exciplex formation. Time-dependent density functional theory calculations match the experimental absorption spectra of the synthesized complexes. In order to further probe the frontier orbitals of both complexes and study their redox behavior, each compound was separately characterized using cyclic voltammetry. The bulk electrolysis of a solution of complex 1 was analyzed by spectroscopic methods confirming the electrochemical synthesis of complex 2
- …