99 research outputs found

    Differential rates of perinatal maturation of human primary and nonprimary auditory cortex

    Get PDF
    Abstract Primary and nonprimary cerebral cortex mature along different timescales; however, the differences between the rates of maturation of primary and nonprimary cortex are unclear. Cortical maturation can be measured through changes in tissue microstructure detectable by diffusion magnetic resonance imaging (MRI). In this study, diffusion tensor imaging (DTI) was used to characterize the maturation of Heschl’s gyrus (HG), which contains both primary auditory cortex (pAC) and nonprimary auditory cortex (nAC), in 90 preterm infants between 26 and 42 weeks postmenstrual age (PMA). The preterm infants were in different acoustical environments during their hospitalization: 46 in open ward beds and 44 in single rooms. A control group consisted of 15 term-born infants. Diffusion parameters revealed that (1) changes in cortical microstructure that accompany cortical maturation had largely already occurred in pAC by 28 weeks PMA, and (2) rapid changes were taking place in nAC between 26 and 42 weeks PMA. At term equivalent PMA, diffusion parameters for auditory cortex were different between preterm infants and term control infants, reflecting either delayed maturation or injury. No effect of room type was observed. For the preterm group, disturbed maturation of nonprimary (but not primary) auditory cortex was associated with poorer language performance at age two years

    A Review of NEST Models, and Their Application to Improvement of Particle Identification in Liquid Xenon Experiments

    Full text link
    Liquid xenon is a leader in rare-event physics searches. Accurate modeling of charge and light production is key for simulating signals and backgrounds in this medium. The signal- and background-production models in the Noble Element Simulation Technique (NEST) are presented. NEST is a simulation toolkit based on experimental data, fit using simple, empirical formulae for the average charge and light yields and their variations. NEST also simulates the final scintillation pulses and exhibits the correct energy resolution as a function of the particle type, the energy, and the electric fields. After vetting of NEST against raw data, with several specific examples pulled from XENON, ZEPLIN, LUX/LZ, and PandaX, we interpolate and extrapolate its models to draw new conclusions on the properties of future detectors (e.g., XLZD's), in terms of the best possible discrimination of electron(ic) recoil backgrounds from a potential nuclear recoil signal, especially WIMP dark matter. We discover that the oft-quoted value of 99.5% discrimination is overly conservative, demonstrating that another order of magnitude improvement (99.95% discrimination) can be achieved with a high photon detection efficiency (g1 ~ 15-20%) at reasonably achievable drift fields of 200-350 V/cm.Comment: 24 Pages, 6 Tables, 15 Figures, and 15 Equation

    Pitch Processing Sites in the Human Auditory Brain

    Get PDF
    Lateral Heschl's gyrus (HG), a subdivision of the human auditory cortex, is commonly believed to represent a general “pitch center,” responding selectively to the pitch of sounds, irrespective of their spectral characteristics. However, most neuroimaging investigations have used only one specialized pitch-evoking stimulus: iterated-ripple noise (IRN). The present study used a novel experimental design in which a range of different pitch-evoking stimuli were presented to the same listeners. Pitch sites were identified by searching for voxels that responded well to the range of pitch-evoking stimuli. The first result suggested that parts of the planum temporale are more relevant for pitch processing than lateral HG. In some listeners, pitch responses occurred elsewhere, such as the temporo-parieto-occipital junction or prefrontal cortex. The second result demonstrated a different pattern of response to the IRN and raises the possibility that features of IRN unrelated to pitch might contribute to the earlier results. In conclusion, it seems premature to assign special status to lateral HG solely on the basis of neuroactivation patterns. Further work should consider the functional roles of these multiple pitch processing sites within the proposed network

    Development of a nuclear test strategy for Test Program Element II

    Get PDF
    As part of Phase O in Test Program Element II of the Office of Fusion Energy's First Wall/Blanket/Shield Engineering Test Program, a test strategy has been developed to address the blanket/shield's (B/S's) thermal-hydraulic and thermomechanical data needs, which were identified in an earlier task through the use of nuclear and supporting nonnuclear testing. In Phase I, which extends through 1984, this strategy emphasizes the development of pre-design information and the nonnuclear supporting tests. After Phase I, nuclear testing will be emphasized, and B/S design-verification testing will become more important. The proposed program will investigate a solid-breeder-blanket concept via nuclear testing. This program can begin in Phase I with nonnuclear support tests, and can progress to integrated nuclear testing soon after the completion of Phase I. The program's approximate cost and schedule are presented. In addition, other possible areas of study for Phase I, and strategies for the use of nuclear and nonnuclear facilities after Phase I are outlined

    A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the mostpressing issues in contemporary particle physics. The dual-phase xenontime-projection chamber is the leading technology to cover the availableparameter space for Weakly Interacting Massive Particles (WIMPs), whilefeaturing extensive sensitivity to many alternative dark matter candidates.These detectors can also study neutrinos through neutrinoless double-beta decayand through a variety of astrophysical sources. A next-generation xenon-baseddetector will therefore be a true multi-purpose observatory to significantlyadvance particle physics, nuclear physics, astrophysics, solar physics, andcosmology. This review article presents the science cases for such a detector.<br

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Retained capacity for perceptual learning of degraded speech in primary progressive aphasia and Alzheimer's disease

    Get PDF
    This work was supported by the Alzheimer’s Society (AS-PG-16-007), the National Institute for Health Research University College London Hospitals Biomedical Research Centre, the UCL Leonard Wolfson Experimental Neurology Centre (PR/ylr/18575) and the Economic and Social Research Council (ES/K006711/1). Individual authors were supported by the Medical Research Council (PhD Studentship to CJDH and RLB; MRC Clinician Scientist Fellowship to JDR), the Wolfson Foundation (Clinical Research Fellowship to CRM), Alzheimer’s Research UK (ART-SRF2010-3 to SJC) and the Wellcome Trust (091673/Z/10/Z to JDW)

    Functional neuroanatomy of speech signal decoding in primary progressive aphasias

    Get PDF
    This work was supported by the Alzheimer’s Society (AS-PG-16-007), the National Institute for Health Research University College London Hospitals Biomedical Research Centre (CBRC 161), the UCL Leonard Wolfson Experimental Neurology Centre (PR/ ylr/18575), and the Economic and Social Research Council (ES/ K006711/1). Individual authors were supported by the Medical Research Council (PhD Studentship to CJDH; MRC Clinician Scientist Fellowship to JDR), the Wolfson Foundation (Clinical Research Fellowship to CRM), the National Brain AppealeFrontotemporal Dementia Research Fund (CNC), Alzheimer’s Research UK (ARTSRF2010-3 to SJC), and the Wellcome Trust (091673/Z/10/Z to JDW)
    corecore